Publications by authors named "Yingjie Lai"

Disturbances in tumor cell metabolism reshape the tumor microenvironment (TME) and impair antitumor immunity, but the implicit mechanisms remain elusive. Here, we found that spermine synthase (SMS) was significantly upregulated in tumor cells, which correlated positively with the immunosuppressive microenvironment and predicted poor survival in hepatocellular carcinoma (HCC) patients. Via "subcutaneous" and "orthotopic" HCC syngeneic mouse models and a series of in vitro coculture experiments, we identified elevated SMS levels in HCC cells played a role in immune escape mainly through its metabolic product spermine, which induced M2 polarization of tumor-associated macrophages (TAMs) and subsequently corresponded with a decreased antitumor functionality of CD8 T cells.

View Article and Find Full Text PDF

Aminotransferases are widely employed as biocatalysts for the asymmetric synthesis of biologically active pharmaceuticals. Transaminase BpTA from Bacillus pumilus W3 can accept a broad spectrum of sterically demanding substrates, but it does not process the key five-membered ring intermediate of sitafloxacin. In the present study, we rationally constructed numerous single-point mutants and six multi-point mutants by combining the structural characteristics of transaminase and its substrates.

View Article and Find Full Text PDF

Aminotransferases are widely employed as biocatalysts to produce chiral amines and biologically active pharmaceuticals via asymmetric synthesis. In this study, transaminase genes in the Bacillus pumilus W3 genome were analysed, and gene ota3 encoding a putative (R)-selective transaminase was identified. The sequence of ota3 shares highest sequence identity (24.

View Article and Find Full Text PDF

Herein we report identification of an imidazopyridine class of potent and selective TYK2 inhibitors, exemplified by prototype 6, through constraint of the rotatable amide bond connecting the pyridine and aryl rings of compound 1. Further optimization led to generation of compound 30 that potently inhibits the TYK2 enzyme and the IL-23 pathway in cells, exhibits selectivity against cellular JAK2 activity, and has good pharmacokinetic properties. In mice, compound 30 demonstrated dose-dependent reduction of IL-17 production in a PK/PD model as well as in an imiquimod-induced psoriasis model.

View Article and Find Full Text PDF

TYK2 is a JAK family protein tyrosine kinase activated in response to multiple cytokines, including type I IFNs, IL-6, IL-10, IL-12, and IL-23. Extensive studies of mice that lack TYK2 expression indicate that the IFN-α, IL-12, and IL-23 pathways, but not the IL-6 or IL-10 pathways, are compromised. In contrast, there have been few studies of the role of TYK2 in primary human cells.

View Article and Find Full Text PDF

A therapeutic rationale is proposed for the treatment of inflammatory diseases, such as psoriasis and inflammatory bowel diseases (IBD), by selective targeting of TYK2. Hit triage, following a high-throughput screen for TYK2 inhibitors, revealed pyridine 1 as a promising starting point for lead identification. Initial expansion of 3 separate regions of the molecule led to eventual identification of cyclopropyl amide 46, a potent lead analog with good kinase selectivity, physicochemical properties, and pharmacokinetic profile.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on optimizing a lead molecule (compound 3) to develop stronger, selective, and orally effective inhibitors of the TYK2 enzyme, which is important for immunological responses.
  • - Through structure-based design, researchers created modifications that improved the potency of these inhibitors while ensuring selectivity against JAK1 and JAK2, leading to the discovery of compound 37.
  • - In mouse experiments, compound 37 demonstrated significant effectiveness in reducing interferon-γ levels, indicating that targeting TYK2 can effectively block the IL-12 signaling pathway in living organisms.
View Article and Find Full Text PDF

We report an SAR study of MC4R analogs containing spiroindane heterocyclic privileged structures. Compound 26 with N-Me-1,2,4-triazole moiety possesses exceptional potency at MC4R and potent anti-obesity efficacy in a mouse model. However, the efficacy is not completely mediated through MC4R.

View Article and Find Full Text PDF

We report a series of potent and selective MC4R agonists based on spiroindane amide privileged structures for potential treatments of obesity. Among the synthetic methods used, Method C allows rapid synthesis of the analogs. The series of compounds can afford high potency on MC4R as well as good rodent pharmacokinetic profiles.

View Article and Find Full Text PDF

We report the design, synthesis and properties of spiroindane based compound 1, a potent, selective, orally bioavailable, non-peptide melanocortin subtype-4 receptor agonist. Compound 1 shows excellent erectogenic activity in the rodent models.

View Article and Find Full Text PDF

It is believed that beta-amyloid aggregation is an important event in the development of Alzheimer's disease. In the course of our studies to identify beta-amyloid aggregation inhibitors, a series of N-phenyl anthranilic acid analogs were synthesized and studied for beta-amyloid inhibition activity. The synthesis, structure-activity relationship, and in vivo activity of these analogs are discussed.

View Article and Find Full Text PDF

SAR about the piperidine core in a series of MC4R agonists is described. A number of alkyl substituents that furnish compounds with good affinity and functional potency are reported.

View Article and Find Full Text PDF