Joint communications and sensing (JCAS) has recently attracted extensive attention due to its potential in substantially improving the cost, energy and spectral efficiency of Internet of Things (IoT) systems that need both radio frequency functions. Given the wide applicability of orthogonal frequency division multiplexing (OFDM) in modern communications, OFDM sensing has become one of the major research topics of JCAS. To raise the awareness of some critical yet long-overlooked issues that restrict the OFDM sensing capability, a comprehensive overview of OFDM sensing is provided first in this paper, and then a tutorial on the issues is presented.
View Article and Find Full Text PDFSelf-interference (SI) is the key issue that prevents in-band full-duplex (IBFD) communications from being practical. Analog multi-tap adaptive filter is an efficient structure to cancel SI since it can capture the nonlinear components and noise in the transmitted signal. Analog least mean square (ALMS) loop is a simple adaptive filter that can be implemented by purely analog means to sufficiently mitigate SI.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
December 2015
In this paper, we propose a new blind learning algorithm, namely, the Benveniste-Goursat input-output decision (BG-IOD), to enhance the convergence performance of neural network-based equalizers for nonlinear channel equalization. In contrast to conventional blind learning algorithms, where only the output of the equalizer is employed for updating system parameters, the BG-IOD exploits a new type of extra information, the input decision information obtained from the input of the equalizer, to mitigate the influence of the nonlinear equalizer structure on parameters learning, thereby leading to improved convergence performance. We prove that, with the input decision information, a desirable convergence capability that the output symbol error rate (SER) is always less than the input SER if the input SER is below a threshold, can be achieved.
View Article and Find Full Text PDF