Publications by authors named "Yingjie Hang"

Paper lateral flow immunoassays combined with surface-enhanced Raman scattering (SERS) technology have gained increasing attention due to their high sensitivity characteristics resulting from the amplified SERS signals of the plasmon-enhanced optical probes. In contrast to conventional colorimetric lateral flow strips, SERS paper lateral flow strips (SERS-PLFSs) are currently not commercially available for widespread use. Analytical validation is the key step for commercialization.

View Article and Find Full Text PDF

Silver and gold nanoparticles have found extensive biomedical applications due to their strong localized surface plasmon resonance (LSPR) and intriguing plasmonic properties. This review article focuses on the correlation among particle geometry, plasmon properties and biomedical applications. It discusses how particle shape and size are tailored controllable synthetic approaches, and how plasmonic properties are tuned by particle shape and size, which are embodied by nanospheres, nanorods, nanocubes, nanocages, nanostars and core-shell composites.

View Article and Find Full Text PDF

Cryogels are widely used in tissue regeneration due to their porous structures and friendly hydrogel performance. Silk-based cryogels were developed but failed to exhibit desirable tunable properties to adapt various biomedical applications. Here, amorphous short silk nanofibers (SSFs) were introduced to fabricate silk cryogels with versatile cues.

View Article and Find Full Text PDF

This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in point-of-care testing (POCT) and bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes.

View Article and Find Full Text PDF

Stem cell fate is determined by specific niches that provide multiple physical, chemical, and biological cues. However, the hierarchy or cascade of impact of these cues remains elusive due to their spatiotemporal complexity. Here, anisotropic silk protein nanofiber-based hydrogels with suitable cell adhesion capacity are developed to mimic the physical microenvironment inside the blastocele.

View Article and Find Full Text PDF

The hierarchical structure of the ECM provides specific niches for tissues to regulate cell behavior, yet the challenge remains to design biomaterial systems for tissue regeneration to recreate such features in vitro. Here, we achieved this goal through the use of aligned hierarchical structures of native silk fibers, generated through the integration of "bottom-up" and "top-down" strategies to generate regenerated silk fibers with aligned nano- to micro-hierarchical structures. To achieve these designs, we assembled and dispersed silk nanofibers (SNF) in formic acid and spun them into fibers using bioinspired microfluidic chips with a geometry mimicking the native silk gland.

View Article and Find Full Text PDF

The replacement therapy or transplantation using neural cells, which differentiated from stem cells, has emerged as a promising strategy for repairing damaged neural tissues and helping functional recovery in the treatment of neural system diseases. The challenge, however, is how to control embryonic stem cell fate so that neural differentiation can be efficiently directed to enrich a neuron cell population, and meanwhile to maintain their bioactivities. This is a key question and has a very significant impact in regenerative medicine.

View Article and Find Full Text PDF

The neural differentiation of embryonic stem cells (ESCs) is of great value in the treatment of neurodegenerative diseases. On the basis of the two related signaling pathways that direct the neural differentiation of ESCs, we used gold nanoparticles (GNP) as a means of combining chemical and physical cues to trigger the neurogenic differentiation of stem cells. Neural differentiation-related functional units (glyco and sulfonate units on glycosaminoglycans, GAG) were anchored on the GNP surface and were then transferred to the cell membrane surface via GNP-membrane interactions.

View Article and Find Full Text PDF

Regulating cell behavior and cell fate are of great significance for basic biological research and cell therapy. Carbohydrates, as the key biomacromolecules, play a crucial role in regulating cell behavior. Herein, "modular" glycopolymers were synthesized by reversible addition-fragmentation chain transfer polymerization.

View Article and Find Full Text PDF

Chemical modifications used with silk materials can be challenging due to heterogeneous reactions, in part due to the assembly state of the protein chains. Here, we assess factors that determine the efficiency of chemical modifications with silk materials. Unlike other natural macromolecules, silk presents changeable self-assembled or aggregation states in aqueous solution, which affect the chemical reactions based on reactive group distribution or accessibility.

View Article and Find Full Text PDF

Gene therapy, a promising and effective treatment, has ignited new hope in overcoming difficult-to-cure diseases. The key question in gene therapy is how to efficiently and safely deliver exogenous nucleic acids into the nuclei of target cells. To achieve stable, efficient and safe gene transfer and to ensure efficiency of gene transfer into cell nuclei, a zinc ion-assisted gene delivery nanosystem was proposed in the present study by loading a low concentration of Zn in Ca@DNA nanoparticles on ethanolamine-functionalized poly(glycidyl methacrylate) (PGEA)-modified SiNWAs (Zn/Ca@DNA + SN-PGEA).

View Article and Find Full Text PDF

Poly(dimethylsiloxane) (PDMS)-based microfluidic systems are gaining increasing attention due to their ease of fabrication, optical transparency and mechanical properties. However, the inherent hydrophobicity and chemical inertness of PDMS hinder its wider application in microfluidic systems. There is thus a strong need for methods for surface modification of PDMS-based microfluidic channels.

View Article and Find Full Text PDF