Publications by authors named "Yingjian Nie"

To achieve a long cycle life and high-capacity performance for Li-O batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product LiO. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO intermediate (LiO(ads)), while Pt active sites exhibit weak adsorption energy and promote the soluble LiO pathway (LiO(sol)).

View Article and Find Full Text PDF

High-entropy alloys (HEAs) are attracting increased attention as an alternative to noble metals for various catalytic reactions. However, it is of great challenge and fundamental importance to develop spatial HEA heterostructures to manipulate d-band center of interfacial metal atoms and modulate electron-distribution to enhance electrocatalytic activity of HEA catalysts. Herein, an efficient strategy is demonstrated to construct unique well-designed HEAs spatial heterostructure electrocatalyst (HEA@Pt) as bifunctional cathode to accelerate oxygen reduction and evolution reaction (ORR/OER) kinetics for Li-O batteries, where uniform Pt dendrites grow on PtRuFeCoNi HEA at a low angle boundary.

View Article and Find Full Text PDF