Sintering significantly contributes to the deactivation of supported metal catalysts under reaction conditions, influenced by various factors, including temperature, atmosphere, and metal-support interactions. The sintering mechanism under the reaction conditions remains complex and ambiguous. This study delves into the sintering behavior of platinum on CeO under CO oxidation conditions, mainly employing transmission electron microscopy to elucidate the effects of different gas components on the sintering mechanism at elevated temperatures.
View Article and Find Full Text PDFInterfacial interaction dictates the overall catalytic performance and catalytic behavior rules of the composite catalyst. However, understanding of interfacial active sites at the microscopic scale is still limited. Importantly, identifying the dynamic action mechanism of the "real" active site at the interface necessitates nanoscale, high spatial-time-resolved complementary-operando techniques.
View Article and Find Full Text PDFRedispersion is an effective method for regeneration of sintered metal-supported catalysts. However, the ambiguous mechanistic understanding hinders the delicate controlling of active metals at the atomic level. Herein, the redispersion mechanism of atomically dispersed Pt on CeO is revealed and manipulated by techniques combining well-designed model catalysts.
View Article and Find Full Text PDFResearch (Wash D C)
February 2023
Chemical electron microscopy (CEM), a toolbox that comprises imaging and spectroscopy techniques, provides dynamic morphological, structural, chemical, and electronic information about an object in chemical environment under conditions of observable performance. CEM has experienced a revolutionary improvement in the past years and is becoming an effective characterization method for revealing the mechanism of chemical reactions, such as catalysis. Here, we mainly address the concept of CEM for heterogeneous catalysis in the gas phase and what CEM could uniquely contribute to catalysis, and illustrate what we can know better with CEM and the challenges and future development of CEM.
View Article and Find Full Text PDFTraditional approaches for transition-metal catalyzed oxidative cross-coupling reactions rely on sp-hybridized starting materials, such as aryl halides, and more specifically, homogeneous catalysts. We report a heterogeneous Pd-catalyzed radical relay method for the conversion of a heteroarene C(sp)-H bond into ethers. Pd nanoparticles are supported on an ordered mesoporous composite which, when compared with microporous activated carbons, greatly increases the Pd d charge because of their strong interaction with N-doped anatase nanocrystals.
View Article and Find Full Text PDFIt has recently been shown that cell entry of mouse hepatitis virus type 2 (MHV-2) is mediated through endocytosis (Z. Qiu et al., J.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
January 2008
Objective: To study how the choices of the quick vs slow protein transfer, the blotting membranes and the visualization methods influence the performance of Western blotting.
Methods: The cellular proteins were abstracted from human breast cell line MDA-MB-231 for analysis with Western blotting using quick (2 h) and slow (overnight) protein transfer, different blotting membranes (nitrocellulose, PVDF and nylon membranes) and different visualization methods (ECL and DAB).
Results: In Western blotting with slow and quick protein transfer, the prestained marker presented more distinct bands on nitrocellulose membrane than on the nylon and PVDF membranes, and the latter also showed clear bands on the back of the membrane to very likely cause confusion, which did not occur with nitrocellulose membrane.
A previous study demonstrated that infection of rat oligodendrocytes by mouse hepatitis virus (MHV) resulted in apoptosis, which is caspase dependent (Y. Liu, Y. Cai, and X.
View Article and Find Full Text PDFOne of the hirudin variants HV3 was efficiently expressed in Escherichia coli using the L-asparaginase II signal sequence and the product was secreted into the culture medium. For the secretory manufacture of HV3, the L-asparaginase II signal sequence containing a single NheI restriction site at its 3' end was designed using the degenerate codons and PCR-amplified from E. coli chromosomal DNA.
View Article and Find Full Text PDF