Nowadays biological mediated syntheses of metal nanoparticles were utilized for various life caring applications. Our research group utilized Delonix elata leaf aqueous extract for the synthesis of silver nanoparticles. Further the synthesized silver nanoparticles were subjected for various characterization techniques which resulted in spherically agglomerated with biological components entrapped in it and also with average particle size of 36nm were studied and reported.
View Article and Find Full Text PDFSilicon surfaces with nanoscale etched patterns were obtained using polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer films as templates, followed by brief immersion in HF(aq). The resulting interfaces were comprised of pseudohexagonal arrays of pits on the silicon, whose shapes depended upon the chosen silicon orientation. The top unetched face of silicon remains capped by the native oxide, and the pit interiors are terminated by Si-H(x).
View Article and Find Full Text PDFThe use of self-assembled polymer structures to direct the formation of mesoscopic (1-100 nm) features on silicon could provide a fabrication-compatible means to produce nanoscale patterns, supplementing conventional lithographic techniques. Here we demonstrate nanoscale etching of silicon, applying standard aqueous-based fluoride etchants, to produce three-dimensional nanoscale features with controllable shapes, sizes, average spacing, and chemical functionalization. The block copolymers serve to direct the silicon surface chemistry by controlling the spatial location of the reaction as well as concentration of reagents.
View Article and Find Full Text PDF