Publications by authors named "Yinghai Wu"

Fractional quantum Hall (FQH) states are exotic quantum many-body phases whose elementary charged excitations are anyons obeying fractional braiding statistics. While most FQH states are believed to have Abelian anyons, the Moore-Read type states with even denominators - appearing at half filling of a Landau level (LL) - are predicted to possess non-Abelian excitations with appealing potential in topological quantum computation. These states, however, depend sensitively on the orbital contents of the single-particle LL wavefunctions and the LL mixing.

View Article and Find Full Text PDF

We study quantum phase transitions in Bose-Fermi mixtures driven by interspecies interaction in the quantum Hall regime. In the absence of such an interaction, the bosons and fermions form their respective fractional quantum Hall (FQH) states at certain filling factors. A symmetry-protected topological (SPT) state is identified as the ground state for strong interspecies interaction.

View Article and Find Full Text PDF

Aerobic denitrifiers have the potential to reduce nitrate in polluted water under aerobic conditions. A salt-tolerant aerobic denitrifier was newly isolated and identified as Vibrio spp. AD2 from a marine recirculating aquaculture system, in which denitrification performance was investigated via single-factor experiment, Box-Behnken experiment, and nitrogen balance analysis.

View Article and Find Full Text PDF

Tensor network states and parton wave functions are two pivotal methods for studying quantum many-body systems. This work connects these two subjects as we demonstrate that a variety of parton wave functions, such as projected Fermi sea and projected fermionic or bosonic paired states, can be represented exactly as tensor networks. The results can be compressed into matrix product states with moderate bond dimensions so various physical quantities can be computed efficiently.

View Article and Find Full Text PDF

The toxicity of nanomaterials to microorganisms is related to their dose and environmental factors. The aim of this study was to investigate the shifts in the microbial community structure and metabolic profiles and to evaluate the environmental factors in a laboratory scale intertidal wetland system exposed to zinc oxide nanoparticles (ZnO NPs). Microbial assemblages were determined using 16S rRNA high-throughput sequencing.

View Article and Find Full Text PDF

Aerobic denitrification microbes have great potential to solve the problem of NO-N accumulation in industrialized recirculating aquaculture systems (RASs). A novel salt-tolerant aerobic denitrifier was isolated from a marine recirculating aquaculture system (RAS) and identified as HRL-9. Its aerobic denitrification performance in different dissolved oxygen concentrations, temperatures, and C/N ratios was studied.

View Article and Find Full Text PDF

We construct an exactly solvable quantum impurity model which consists of spin-1/2 conduction fermions and a spin-1/2 magnetic moment. The ground state is a Gutzwiller projected Fermi sea with nonorthonormal modes and its wave function in the site-occupation basis is a Jastrow-type homogeneous polynomial. The parent Hamiltonian has all-to-all inverse-square hopping terms between the conduction fermions and inverse-square spin-exchange terms between the conduction fermions and the magnetic moment.

View Article and Find Full Text PDF

Wetland plants that cover the wetlands play an important role in reducing pollutants. The aim of this study was to investigate the effect of two plant species on microbial communities and nitrogen-removal genes and to evaluate the contributions of absorbing pollutants by (CI) and (CA) to the removal performance in both a vertical subsurface flow constructed wetland and a horizontal subsurface flow constructed wetland, which were part of a full-scale hybrid constructed wetland system. The microbial assemblages were determined using 16S rRNA high-throughput sequencing.

View Article and Find Full Text PDF

Time crystals, a phase showing spontaneous breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase in both the presence and the absence of localization, while in theories localization by disorder is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder.

View Article and Find Full Text PDF

The current proposals for producing non-Abelian anyons and Majorana particles, which are neither fermions nor bosons, are primarily based on the realization of topological superconductivity in two dimensions. We show theoretically that the unique Landau level structure of bilayer graphene provides a new possible avenue for achieving such exotic particles. Specifically, we demonstrate the feasibility of a "parton" fractional quantum Hall (FQH) state, which supports non-Abelian particles without the usual topological superconductivity.

View Article and Find Full Text PDF

Microorganisms play a key role in removal of pollutants in constructed wetlands (CWs). The aim of this study was to investigate the composition and diversity of microbes in a full-scale integrated constructed wetland system and examine how microbial assemblages were shaped by the structures and physicochemical properties of the sediments. The microbial assemblages were determined using 16S rRNA high-throughput sequencing.

View Article and Find Full Text PDF

The aim of this study was to investigate the feasibility of utilizing the fruiting bodies of a jelly macro-fungus Auricularia polytricha as adsorbents to remove emulsified oil from water. The effects of several factors, including temperature, initial pH, agitation speed, and adsorbent dosage, were taken into account. Results showed that the optimized conditions for adsorption of A.

View Article and Find Full Text PDF

The origin of the fractional quantum Hall effect (FQHE) at 4/11 and 5/13 has remained controversial. We make a compelling case that the FQHE is possible here for fully spin polarized composite fermions, but with an unconventional underlying physics. Thanks to a rather unusual interaction between composite fermions, the FQHE here results from the suppression of pairs with a relative angular momentum of three rather than one, confirming the exotic mechanism proposed by Wójs, Yi, and Quinn [Phys.

View Article and Find Full Text PDF

The excitations of the 7/3 fractional Hall state, one of the most prominent states in the second Landau level, are not understood. We study the effect of screening by composite fermion excitons and find that it causes a strong renormalization at 7/3, thanks to a relatively small exciton gap and a relatively large residual interaction between composite fermions. The excitations of the 7/3 state are to be viewed as composite fermions dressed by a large exciton cloud.

View Article and Find Full Text PDF

This paper presents a novel method for reactivation of spent CaO-based sorbents from calcium looping (CaL) cycles for CO(2) capture. A spent Cadomin limestone-derived sorbent sample from a pilot-scale fluidized bed (FBC) CaL reactor is used for reactivation. The calcined sorbent is sprayed by water in a pelletization vessel.

View Article and Find Full Text PDF

Alkali-promoted hydrotalcite-based materials showed very high CO(2) storage capacity, exceeding 15 mmol g(-1) when the carbonation reaction was carried out at relatively high temperature (300-500 °C) and high partial pressure of steam and CO(2). In situ XRD experiments have allowed correlation of high CO(2) capacity to the transformation of magnesium oxide centres into magnesium carbonate in alkali-promoted hydrotalcite-based material. Moreover, it has been clearly shown that crystalline magnesium carbonate may be reversibly formed at temperatures above 300 °C in the presence of sufficient partial pressure of steam in the gas phase, conditions that are prevalent in pre-combustion CO(2) capture.

View Article and Find Full Text PDF