In research on building a one-shot learning neural network without pre-training using mass data, the limitation on the information obtained from a single training sample downgrades the performance of the network. In order to improve performance and take full advantage of the support set, in this study, we design three kinds of shadow nodes and propose a structure-based training method for a correlation-coefficient-based neural network. This training strategy focuses on branches that are not activated or inactivated as expected.
View Article and Find Full Text PDFSensors (Basel)
November 2023
One-shot object detection has been a highly demanded yet challenging task since the early age of convolutional neural networks (CNNs). For some newly started projects, a handy network that can learn the target's pattern using a single picture and automatically decide its architecture is needed. To specifically address a scenario in which a single or multiple targets are standing in relatively stable circumstances with hardly any training data, where the rough location of the target is required, we propose a one-shot simple target detection model that focuses on two main tasks: (1) deciding if the target is in the testing image, and (2) if yes, outputting the target's location in the image.
View Article and Find Full Text PDFThis paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification.
View Article and Find Full Text PDFA compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided.
View Article and Find Full Text PDF