Biotechnol Bioeng
December 2023
Vascular tissue engineering has been considered promising as one of the alternatives for viable artificial tissues and organs. Macro- and microscale hollow tubes fabricated with various techniques have been widely studied to mimic blood vessels. To date, the fabrication of biomimetic capillary vessels with sizes ranging from 1 to 10 µm is still challenging.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2024
Three-dimensional (3D) printing technology has progressed exceedingly in the area of tissue engineering. Despite the tremendous potential of 3D printing, building scaffolds with complex 3D structure, especially with soft materials, still exist as a challenge due to the low mechanical strength of the materials. Recently, sacrificial materials have emerged as a possible solution to address this issue, as they could serve as temporary support or templates to fabricate scaffolds with intricate geometries, porous structures, and interconnected channels without deformation or collapse.
View Article and Find Full Text PDFVascularization for tissue engineering applications has been challenging over the past decades. Numerous efforts have been made to fabricate artificial arteries and veins, while few focused on capillary vascularization. In this paper, core-sheath electrospinning was adopted to fabricate nanoporous microtubes that mimic the native capillaries.
View Article and Find Full Text PDFThere has been substantial progress in tissue engineering of biological substitutes for medical applications. One of the major challenges in development of complex tissues is the difficulty of creating vascular networks for engineered constructs. The diameter of current artificial vascular channels is usually at millimeter or submillimeter level, while human capillaries are about 5 to 10 µm in diameter.
View Article and Find Full Text PDFIn tissue engineering, scaffolds should provide the topological and physical cues as native tissues to guide cell adhesion, growth, migration, and differentiation. Fibrous structure is commonly present in human musculoskeletal tissues, including muscles, tendons, ligaments, and cartilage. Biomimetic fibrous scaffolds are thus critical for musculoskeletal tissue engineering.
View Article and Find Full Text PDFThe creation of biomimetic cell environments with micro and nanoscale topographical features resembling native tissues is critical for tissue engineering. To address this challenge, this study focuses on an innovative electrospinning strategy that adopts a symmetrically divergent electric field to induce rapid self-assembly of aligned polycaprolactone (PCL) nanofibers into a centimeter-scale architecture between separately grounded bevels. The 3D microstructures of the nanofiber scaffolds were characterized through a series of sectioning in both vertical and horizontal directions.
View Article and Find Full Text PDFNanobiomedicine (Rij)
October 2018
Tendon injuries can be difficult to heal and have high rates of relapse due to stress concentrations caused by scar formation and the sutures used in surgical repair. Regeneration of the tendon/ligament-to-bone interface is critical to provide functional graft integration after injury. The objective of this study is to recreate the tendon-to-bone interface using a gradient scaffold which is fabricated by a one-station electrospinning process.
View Article and Find Full Text PDFAs a versatile nanofiber manufacturing technique, electrospinning has been widely employed for the fabrication of tissue engineering scaffolds. Since the structure of natural extracellular matrices varies substantially in different tissues, there has been growing awareness of the fact that the hierarchical 3D structure of scaffolds may affect intercellular interactions, material transportation, fluid flow, environmental stimulation, and so forth. Physical blending of the synthetic and natural polymers to form composite materials better mimics the composition and mechanical properties of natural tissues.
View Article and Find Full Text PDF