ACS Appl Mater Interfaces
February 2024
The novel freshwater production technology, such as interface solar-steam conversion (ISSC) technology, has advanced so rapidly recently, where its energy capture and conversion process was localized at the air-water interface so as to achieve high efficiency of energy utilization and transformation. However, when enlarging the evaporation surface and application scale, the inevitably increased heat loss and reduced conversion efficiency put it in a dilemma: should we exploit innovative steamer constructs for practical applications. In order to effectively mitigate heat loss from the evaporator to the surrounding environment, a series of spatial pattern evaporators (SPEs) are specifically designed in this article.
View Article and Find Full Text PDFHerein, an integrated solar-thermal-power protocol is presented at a micro-nanoscopic level to maximize the energy utilization efficiency involving utilization period and utilization patterns, and the nexus of freshwater production and nanogeneration is realized. This sophisticated vaporization device is constructed with the merits of thermally confined evaporation space in favor of recycling latent heat of condensation and optimizing light absorption based on the local sunlight angle of incidence. Inspired by a bird's nest, Sb WO /D-Fructose composites are prepared as photothermal absorbers to achieve a superior water evaporation rate of 2.
View Article and Find Full Text PDFTransparent conducting oxides are a critical component in modern (opto)electronic devices and solar energy conversion systems, and forming textured functional films on them is highly desirable for property manipulation and performance optimization. However, technologically important materials show varied crystal structures, making it difficult to establish coherent interfaces and consequently the oriented growth of these materials on transparent conducting oxides. Here, taking lattice-mismatched hexagonal α-FeO and tetragonal fluorine-doped tin oxide as the example, atomic-level investigations reveal that a coherent ordered structure forms at their interface, and via an oxygen-mediated dimensional and chemical-matching manner, that is, matched Voronoi cells of oxygen sublattices, [110]-oriented α-FeO films develop on fluorine-doped tin oxide.
View Article and Find Full Text PDFBiVO possesses a suitable band gap for photoelectrochemical (PEC) water splitting to produce hydrogen; however, the performance of BiVO is limited by several adverse factors. The bulk charge recombination and the slow surface water oxidation reaction of BiVO are main unfavorable factors. In view of these disadvantages, an Fe-B electrocatalyst is loaded on BiVO to improve the PEC performance of BiVO.
View Article and Find Full Text PDFDeveloping highly efficient photocatalysts toward synchronously removing heavy metals and organic pollutants is still a serious challenge. Herein, we depict hierarchical S-scheme heterostructured photocatalysts prepared via in situ anchoring UiO-66-NH nanoparticles onto the CdInS porous microsphere structures assembled with numerous nanosheets. In the mixed system of Cr(VI) and tetracycline (TC), the optimal photocatalyst (CIS@U66N-30) shows remarkable photocatalytic activities toward the synchronous removal of Cr(VI) (97.
View Article and Find Full Text PDFUnderstanding the photocatalytic reductive dehalogenation mechanism of halogenated aromatic pollutants is of great research value. However, the proton source in the photocatalytic dehalogenation process of representative halogenated aromatic pollutants by TiO is not clear. In this study, the TiO surface was modified by hydrochloric acid, sodium hydroxide, and sodium fluoride to obtain TiO samples with different hydroxyl groups.
View Article and Find Full Text PDFResearch (Wash D C)
November 2019
Metal nitrides are widely studied due to their outstanding physical properties, including high hardness, high thermal and chemical stability, low electrical resistivity etc. Generally, metal nitrides can be obtained from the direct reaction of metal and ammonia/nitrogen. However, some of the metal nitrides, such as TaN, cannot be synthesized by direct nitridation of metals.
View Article and Find Full Text PDFHere, we discover that there is an electrochemical doping reaction that generates surface states when TiO2 nanotube photoanodes are immersed into NaBH4 solution, thus improving the photoelectrochemical performance due to the surface states acting as an efficient electron transfer route.
View Article and Find Full Text PDFMany metal-oxide candidates for photoelectrochemical water splitting exhibit localized small polaron carrier conduction. Especially hematite (α-FeO) photoanodes often suffer from low carrier mobility, which causes the serious bulk electron-hole recombination and greatly limits their PEC performances. In this study, the charge separation efficiency of hematite was enhanced greatly by coating an ultrathin p-type LaFeO overlayer.
View Article and Find Full Text PDFActive, stable, and cost-effective electrocatalysts are attractive alternatives to the noble metal oxides that have been used in water splitting. The direct nucleation and growth of electrochemically active LDH materials on chemically modified MWCNTs exhibit considerable electrocatalytic activity toward oxygen evolution from water oxidation. CoMn-based and NiMn-based hybrids were synthesized using a facile chemical bath deposition method and the as-synthesized materials exhibited three-dimensional hierarchical configurations with tunable Co/Mn and Ni/Mn ratio.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2015
Hematite (α-Fe2O3) is one of the most promising candidates for photoelectrodes in photoelectrochemical water splitting system. However, the low visible light absorption coefficient and short hole diffusion length of pure α-Fe2O3 limits the performance of α-Fe2O3 photoelectrodes in water splitting. Herein, to overcome these drawbacks, single-crystalline tin-doped indium oxide (ITO) nanowire core and α-Fe2O3 nanocrystal shell (ITO@α-Fe2O3) electrodes were fabricated by covering the chemical vapor deposited ITO nanowire array with compact thin α-Fe2O3 nanocrystal film using chemical bath deposition (CBD) method.
View Article and Find Full Text PDFA direct Z-scheme photocatalyst Bi2O3/g-C3N4 was prepared by ball milling and heat treatment methods. The photocatalyst was characterized by X-ray powder diffraction (XRD), UV-vis diffuse reflection spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface areas, photoluminescence technique (PL), and electron spin resonance (ESR) technology. The photocatalytic activity was evaluated by degradation of methylene blue (MB) and rhodamine B (RhB).
View Article and Find Full Text PDFBackground: Dachaihu Granule, commonly used for treating cholecystitis, is derived from a famous traditional Chinese formula named Dachaihu Decoction. No analytical method has been reported for simultaneous determination of 10 bioactive compounds for quality control in Dachaihu Granule so far.
Objective: To develop a high-performance liquid chromatographic (HPLC) method with diode array detector (DAD) for simultaneous determination of 10 bioactive compounds (paeoniflorin, aloe-emodin, rhein, emodin, chrysophanol, physcion, naringin, hesperidin, neohesperidin, and baicalin) in traditional Chinese medicine Dachaihu Granule.
High activity hexagonal-BN (h-BN)/TiO(2) composite photocatalysts were prepared by ball milling method. The structural and optical properties of the samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS), and fluorescence emission spectra. The effect of the loading amount of h-BN and the ball milling time on the photocatalytic degradation of Rhodamine B (RhB) and methylene blue (MB) was investigated.
View Article and Find Full Text PDF