Accurate prediction of wetland soil organic carbon concentration and an understanding of its controlling factors are important for studying regional climate change and wetland carbon cycles; with that knowledge mechanisms can be put in place that are conducive to sustainable ecosystem management for environmental health. In this study, a hybrid approach combining an artificial neural network and ordinary kriging and 103 soil samples at three soil depth ranges (0-30, 30-60, and 60-100 cm) were used to predict wetland soil organic carbon concentration in China's Liao River Basin. The model evaluation indicated that a combination of artificial neural network and ordinary kriging and limited soil samples achieved good performance in predicting wetland soil organic carbon concentration.
View Article and Find Full Text PDF