Publications by authors named "Yingcui Bu"

At present, some progress has been made in developing NIR light-responsive free radical generators. However, the efficacy of theranostics continues to be hindered by tumor-associated inflammatory reactions. Hence, fulfilling the in situ release of free radicals upon NIR light excitation specifically activated by the inflammation microenvironment would be an ideal strategy for efficient inflammation eradication and tumor suppression but remains a challenge.

View Article and Find Full Text PDF

Aluminum (Al) and fluorine (F) ions can be easily enriched in tea plants. When they excessively accumulate in tea, they can affect the health of tea lovers. Herein, a simple, highly sensitive and selective fluorescent probe (named BHMP) for Al and F detection was developed through a one-step condensation reaction, in which benzothiazole acted as a fluorophore and acceptor and hydrazine-Schiff base as a recognition unit.

View Article and Find Full Text PDF

Lipid droplets (LDs) and lysosomes are vital organelles that play crucial roles in various physiological and pathological processes. However, simultaneous two-color visualization of these two organelles using a single probe for cell homeostasis monitoring remains a challenge due to the lack of rational design strategies. To address this issue, we have developed an aggregation-induced emission (AIE) fluorescent probe named TPE-NDI-Mor with an electron donor (D)-acceptor (A) structure, which can stain both LDs and lysosomes with high selectivity through green and red fluorescence imaging, respectively.

View Article and Find Full Text PDF

Investigation of electron transfer (ET) between photosensitizers (PSs) and adjacent substrates in hypoxic tumors is integral to highly efficient tumor therapy. Herein, the oxygen-independent ET pathway to generate hydrogen free radicals (H˙) was established by the self-assembled phototherapeutic agent -S under near-infrared (NIR)-light irradiation, coupled with the oxidation of reduced coenzyme NADPH, which induced ferroptosis and effectively elevated the therapeutic performance in hypoxic tumors. The higher surface energy and longer exciton lifetimes of the fine crystalline -S nanofibers were conducive to improving ET efficiency.

View Article and Find Full Text PDF

Photodynamic therapy (PDT), characterized by high treatment efficiency, absence of drug resistance, minimal trauma, and few side effects, has gradually emerged as a novel and alternative clinical approach compared to traditional surgical resection, chemotherapy and radiation. Whereas, considering the limited diffusion distance and short lifespan of reactive oxygen species (ROS), as well as the hypoxic tumor microenvironment, it is crucial to design photosensitizers (PSs) with suborganelle specific targeting ability and low-oxygen dependence for accurate and highly efficient photodynamic therapy. In this study, we have meticulously designed three PSs, namely CIH, CIBr, and CIPh, based on molecular engineering.

View Article and Find Full Text PDF

Lipid droplets (LDs) are important subcellular organelles that play a huge role in cell metabolism and growth. In this study, we synthesized two LDs fluorescent probes with benzothiadiazole (BTH) as electron acceptor and triphenylamine (TPA) as electron donor, which named as TPA-BTH1 and TPA-BTH2, respectively. Meanwhile, we introduced long alkyl chain to the probe as a shielding group and LDs targeting enhancement group.

View Article and Find Full Text PDF

Considering the chemodynamic therapy and chemotherapy independent of external stimulus witnessing great advantage in the clinical translation, developing a smart nanoplatform that can realize enhanced chemo/chemodynamic synergistic therapy in the tumor microenvironment (TME) is of great significance. Herein, we highlight the enhanced pH-responsive chemo/chemodynamic synergistic cancer therapy based on in situ Cu di-chelation. The alcohol-withdrawal drug disulfiram (DSF) and chemotherapeutic drug mitoxantrone (MTO) were embedded into PEGylated mesoporous CuO (denoted as PEG-CuO@DSF@MTO NPs).

View Article and Find Full Text PDF

Mitochondrial membrane potential (MMP) and sulfur dioxide (SO) significantly affect the mitochondrial state. In this work, and were constructed through side-chain engineering, in which bearing the poorer hydrophobicity could localize on mitochondria better. Interestingly, short-wave emission was captured due to the sensitive response of to SO (LOD = 13.

View Article and Find Full Text PDF

The performance of chemotherapeutic agents has been largely restrained by the dose-dependent toxic side effects. In this work, cisplatin (CDDP) was endowed with the capability of photoactivated reactive oxygen species (ROS) generation and self-reporting cell uptake via coordination with a small organic molecule . In the resultant , the Pt-N coordination could obviously enhance the intermolecular charge transfer (ICT) process that allows the integration of fluorescence imaging, photogenerated ROS, and chemotherapeutic performance.

View Article and Find Full Text PDF

Development of an activated ratiometric indicator that is specific to plasma membrane (PM) viscosity exhibits great application prospects in disease diagnosis and treatment but remains a great challenge. Herein, a photo-activated fluorescent probe () was designed and prepared tactfully, which could analyze and real-time monitor the microenvironmental homeostasis of the PM based on a two-channel ratiometric imaging model. Interestingly, upon light irradiation, generates reactive oxygen species and thus increases the cellular viscosity, which increases two emission peaks at 480 and 610 nm.

View Article and Find Full Text PDF

Intracellular lipid storage and regulation occur in lipid droplets, which are of great significance to the physiological activities of cells. Herein, a lipid droplet-specific fluorescence probe () with a high quantum yield (QY = 73.28%), excellent photostability, and quickly polarity sensitivity was constructed successfully.

View Article and Find Full Text PDF

The real-time and differentiated visualization of the organelles is favorable for exploring the distribution and interaction. However, most visual probes emit monochromatic fluorescence and target a single organelle, which impedes the in-depth study of their interplay. To overcome this obstacle, we tactfully conceived a polarity-sensitive fluorescent that could accurately discriminate polarity changes in the cellular environment, exhibiting distinct fluorescence in lipid droplets (LDs) and mitochondria.

View Article and Find Full Text PDF

Various suborganelles are delimited by lipid bilayers, in which high spatial and temporal morphological changes are essential to many physiological and pathological processes of cells. However, almost all the amphiphilic fluorescent molecules reported until now are not available for in situ precise tracking of membrane dynamics in cell apoptosis. Here, the MO (coumarin pyridine derivatives) was devised by engineering lipophilic coumarin and cationic pyridine salt, which not only lastingly anchored onto the plasma membrane in dark due to appropriate amphipathicity and electrostatic interactions but also in situ reflected the membrane damage and heterogeneity with secretion of extracellular vesicles (EVs) under reactive oxygen species regulation and was investigated by two-photon fluorescence lifetime imaging microscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Photodynamic therapy (PDT) often struggles in tumor environments due to low oxygen levels, limiting the generation of reactive oxygen species, which are crucial for effective treatment.
  • Researchers have engineered a new hydroxyl radical (·OH) photogenerator called WS2D that enhances charge carrier generation and accelerates reaction efficiency, leading to better ·OH production.
  • WS2D nanoparticles are designed for better stability in solutions and show promising biocompatibility and targeting abilities, making them effective for in vitro and in vivo applications in phototheranostics and achieving high PDT efficiency.
View Article and Find Full Text PDF

Photodynamic therapy has been generally developed and approved as a promising theranostic technique in recent years, which requires photosensitizers to bear high efficiency of reactive oxygen species production, precisely targeting ability and excellent biocompatibility. The real-time monitoring the microenvironments such as viscosity dynamic involved in mitophagy mediated by photodynamic therapy is significantly important to understand therapeutic process but barely reported. In this work, a pyridinium-functionalized triphenylamine derivative, (E)-4-(2-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)vinyl)-1-methylpyridin-1-ium iodide (Mito-I), was exploited as photosensitizer for mitochondria-targeted photodynamic therapy and as fluorescent probe for imaging the mitochondrial viscosity dynamic during mitophagy simultaneously.

View Article and Find Full Text PDF

Considering the multiple biological barriers before the entry of photosensitizers (PSs) into cytoplasm, it is of paramount importance to track PSs to elucidate their behaviors and distributions to guide the photodynamic therapy (PDT). Also, the developed PSs suffer from strong oxygen dependency. However, reports on such ideal theranostic platforms are rare.

View Article and Find Full Text PDF

Photodynamic therapy (PDT), as an emerging treatment modality, which takes advantage of reactive oxygen species (ROS) generated upon light illumination to ablate tumours, has suffered from a limited treatment depth, strong oxygen dependence and short ROS lifespan. Herein, we developed a highly efficient NIR-I light (808 nm laser) initiated theranostic system based on a fluorescent photosensitizer (EBD-1) with cancer cell membrane targeting ability, which can realize large penetration depth in tissue, generate superoxide radicals (O ˙) to relieve the oxygen-dependence, confine the ROS oxidation at the cell membrane, and self-report the cell viability during the PDT process. experiments demonstrated that EBD-1 under 808 nm light successfully accomplished remarkable cancer ablation.

View Article and Find Full Text PDF

Recently, phototherapy has attracted much attention due to its negligible invasiveness, insignificant toxicity and excellent applicability. The construction of a newly proposed nanosystem with synergistic photothermal and photodynamic tumor-eliminating properties requires a delicate structure design. In this work, a novel therapeutic nanoplatform (denoted as BCS-Ce6) based on defective cobalt hydroxide nanosheets was developed, which realized hypoxia-relieved photothermal-enhanced photodynamic therapy against cancer.

View Article and Find Full Text PDF

Exploiting two-dimensional nanomaterials as photo-based theranostic agents is promising for the highly efficient ablation of deep-tissue-buried tumors. However, they are limited by their poor absorption in the second near-infrared-light (NIR-II) bio-window (1000-1300 nm) and intrinsic nonbiodegradability. Herein, defect-rich sulfur-doped Ni(OH)2 (S-Ni(OH)2) nanosheets decorated with bovine serum albumin (BSA) as a novel theranostic agent is developed, which can accomplish multimodal-imaging-guided photothermal ablation of mouse cancers in the NIR-II bio-window.

View Article and Find Full Text PDF

Cell viability is greatly affected by external stimulus eliciting correlated dynamical physiological processes for cells to choose survival or death. A few fluorescent probes have been designed to detect whether the cell is in survival state or apoptotic state, but monitoring the regulation process of the cell undergoing survival to death remains a long-standing challenge. Herein, we highlight the in situ monitor of mitochondria regulating the cell viability by the RNA-specific fluorescent photosensitizer .

View Article and Find Full Text PDF

Photodynamic therapy (PDT) takes advantage of reactive oxygen species (ROS) to trigger the apoptosis for cancer therapy. Given that cell apoptosis is a form of programmed cell death involved with multiple suborganelles and cancer cells are more sensitive to ROS than normal cells, early confirmation of the apoptosis induced by ROS would effectively avoid overtreatment. Herein, we highlight an aggregation-induced emission (AIE)-based theranostic agent () to in situ dynamically track mitophagy prior to late apoptosis.

View Article and Find Full Text PDF