In this paper, high Er concentration erbium doped fiber (EDF) and erbium-ytterbium co-doped fiber (EYDF) were fabricated for the seed and master oscillator power amplifier (MOPA) system of the single-frequency fiber laser. An in-band pumping source with the wavelength of 1535 nm was proposed to improve the efficiency in the ring-cavity. A slope efficiency of 23.
View Article and Find Full Text PDFBismuth-doped germanosilicate fiber (BGSF), the active media of fiber amplifiers, has attracted widespread attention. Here, we report a BGSF with a high bismuth concentration of 0.075 wt.
View Article and Find Full Text PDFExtending the gain bandwidth of L-band optical fiber amplifier has provoked a widespread interest. To date, achieving a high-efficiency extended L-band amplification remains a challenge. Here, we report a cladding-pumped Er/Yb co-doped alumino-phosphosilicate fiber, prepared by the modified chemical vapor deposition process.
View Article and Find Full Text PDFThe extended L-band 4-core Er/Yb co-doped fiber and amplifier (MC-EYDFA) is first proposed and demonstrated, to the best of our knowledge, for space division multiplexing combined with wavelength division multiplexing application. The fiber core co-doped with Er/Yb/P is adopted for bandwidth expansion, and the long wavelength extends to 1625 nm. Numerical simulations further show that efficient amplification and higher saturation power are achieved with the 1018 nm cladding pumping.
View Article and Find Full Text PDFThe 1.5-µm fiber laser is widely used in the fields of laser lidar, remote sensing, and gas monitoring because of its advantages of being eye-safe and exhibiting low atmospheric transmission loss. However, due to the ∼1-µm amplified spontaneous emission (ASE) of the Er/Yb co-doped fiber (EYDF), it is difficult to improve the laser power.
View Article and Find Full Text PDFWe present the design and fabrication of a 3 × 1 signal combiner with high beam quality based on supermode theory. For improving beam quality, the fiber with core diameter of 34 µm and numerical aperture of 0.11 is first chosen as the output fiber.
View Article and Find Full Text PDFA cladding-pumped 4-core erbium-doped fiber (4C-EDF) with a pedestal structure has been firstly, to the best of our knowledge, proposed and fabricated for space division multiplexing (SDM) amplification. The numerical simulation shows that the index-raised pedestal around the fiber core can improve power conversion efficiency (PCE) by enhancing pump power usage. Compared with conventional 4C-EDF, the 4C-EDF with a pedestal has a gain improvement of 4.
View Article and Find Full Text PDFSpatial division multiplexing (SDM) is one of the most important technologies that may help to solve the future capacity crisis. However, to date, SDM optical amplification is still a challenge for its application. Herein, we numerically and experimentally demonstrated a few-mode Er/Yb co-doped fiber amplifier (FM-EYDFA) for extended L-band operation.
View Article and Find Full Text PDFThe gain bandwidth of the erbium-doped fiber amplifier limits the enhancement of the transmission capacity in optical fiber communication systems. This Letter reports an erbium-ytterbium co-doped phosphosilicate fiber, which is expected to increase transmission capacity by extending the L-band gain bandwidth to 1623 nm. The fiber was fabricated by modified chemical vapor deposition combined with solution doping technology.
View Article and Find Full Text PDFWe report a heavily Yb/Al/B/F co-doped high silica rod with a negative refractive index relative to pure silica. The high silica rod was fabricated from nanoporous silica rod using glass phase-separation technology. To lower the refractive index, B and F were simultaneously introduced into the silica rod and the optical properties of the silica rod were investigated.
View Article and Find Full Text PDFGHz repetition rate fundamentally mode-locked lasers have attracted great interest for a variety of scientific and practical applications. A passively mode-locked laser in all-fiber format has the advantages of high stability, maintenance-free operation, super compactness, and reliability. In this paper, we present numerical investigation on passive mode-locking of all-fiber lasers operating at repetition rates of 1-20 GHz.
View Article and Find Full Text PDFWe report a Yb heavily doped photonic crystal fiber with 30 μm core diameter manufactured for the first time by an alternative technique. Silica core rods with a diameter of 3 mm and a length of 280 mm were prepared by the sodium-borosilicate glass phase-separation technology. The measurements show that the fiber has an Yb concentration of 22810 ppm by weight, and a resultant absorption of approximately 8.
View Article and Find Full Text PDFWe report on the preparation and optical characteristics of an Yb(3+)-doped large core silica fiber with the active core prepared from nanoporous silica rod by the glass phase-separation technology. The measurements show that the fiber has an Yb(3+) concentration of 9811 ppm by weight, a low background attenuation of 0.02 dB/m, and absorption from Yb(3+) about 5.
View Article and Find Full Text PDFWe report that Eu(2+) can be an efficient sensitizer for Yb(3+) and a broadband absorber for blue solar spectra in the host of oxide glass. The greenish 4f → 5d transition of Eu(2+) and the characteristic near-infrared emission of Yb(3+) were observed, with the blue-light of xenon lamp excitation. The 5d energy can be adjusted by the host and the energy transfer efficiency can be enhanced.
View Article and Find Full Text PDF