Aims: To predict the vagus nerve stimulation (VNS) efficacy for pediatric drug-resistant epilepsy (DRE) patients, we aim to identify preimplantation biomarkers through clinical features and electroencephalogram (EEG) signals and thus establish a predictive model from a multi-modal feature set with high prediction accuracy.
Methods: Sixty-five pediatric DRE patients implanted with VNS were included and followed up. We explored the topological network and entropy features of preimplantation EEG signals to identify the biomarkers for VNS efficacy.
A long-term field experiment was conducted at a Chinese hickory () plantation from 2011 to 2021, with the purpose of researching the effects of long-term sod cultivation on hickory plantation soil fungal communities and enzyme activities and providing experience for ecological management in other plantations. Sod cultivation included oilseed rape (, BR), Chinese milk vetch (, AS), and oilseed rape+Chinese milk vetch (BA), and clear tillage (CT) served as a contrast. The soil fertility, fungal community composition and diversity, and soil enzyme activities were determined.
View Article and Find Full Text PDFAims: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug-resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation.
View Article and Find Full Text PDF3D bioprinting technology displays many advantages for tissue engineering applications, but its utilization is limited by veryfew bioinks available for biofabrication. In this study, a novel type of bioink, which includes three methacryloyl modifiedmannans, was introduced to 3D bioprinting for tissue engineering applications. Yeast mannan (YM) was modified by reactingwith methacrylate anhydride (MA) at different concentrations, and three YM derived bioinks were obtained, which weretermed as YM-MA-1, YM-MA-2 and YM-MA-3 and were distinguished with different adjusted methacrylation degrees.
View Article and Find Full Text PDFPurpose: This study examined the patterned treatment of corneal collagen cross-linking (CXL) for keratoconus to reduce the complications caused by ultraviolet (UV) irradiation. By modifying the method of UV irradiation during the cross-linking process, cross-linking with a special structure is achieved, and the cross-linking effect is analyzed and compared to that of traditional cross-linking. By constructing an animal model of keratoconus, the process and effect of corneal cross-linking can be investigated more fundamentally.
View Article and Find Full Text PDFTo investigate the effect of the organic loading rate (OLR) on anaerobic treatment of monosodium glutamate (MSG) wastewater, a lab-scale up-flow anaerobic blanket (UASB) reactor was continuously operated over a 222-day period. The overall performances of COD removal and methane recovery initially exhibited an increase and subsequently decreased when the OLR was increased from 1 g-COD/L/d to 24 g-COD/L/d. At the optimal OLR of 8 g-COD/L/d, superior performance was obtained with a maximum COD removal efficiency of 97%, a methane production rate of 2.
View Article and Find Full Text PDF