Publications by authors named "YingYu Sun"

Focal Segmental Glomerulosclerosis (FSGS) is a histologic lesion caused by a variety of injurious stimuli that lead to dysfunction/loss of glomerular visceral epithelial cells (i.e. podocytes).

View Article and Find Full Text PDF

Gene co-expression networks may encode hitherto inadequately recognized vulnerabilities for adult gliomas. By identifying evolutionally conserved gene co-expression modules around EGFR (EM) or PDGFRA (PM), we recently proposed an EM/PM classification scheme, which assigns IDH-wildtype glioblastomas (GBM) into the EM subtype committed in neural stem cell compartment, IDH-mutant astrocytomas and oligodendrogliomas into the PM subtype committed in early oligodendrocyte lineage. Here, we report the identification of EM/PM subtype-specific gene co-expression networks and the characterization of hub gene polypyrimidine tract-binding protein 1 (PTBP1) as a genomic alteration-independent vulnerability in IDH-wildtype GBM.

View Article and Find Full Text PDF

Background: Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy.

View Article and Find Full Text PDF

Detailed characterizations of genomic alterations have not identified subtype-specific vulnerabilities in adult gliomas. Mapping gliomas into developmental programs may uncover new vulnerabilities that are not strictly related to genomic alterations. After identifying conserved gene modules co-expressed with EGFR or PDGFRA (EM or PM), we recently proposed an EM/PM classification scheme for adult gliomas in a histological subtype- and grade-independent manner.

View Article and Find Full Text PDF

The basal ganglia have been implicated in auditory-dependent vocal learning and plasticity in human and songbirds, but the underlying neural phenotype remains to be clarified. Here, using confocal imaging and three-dimensional electron microscopy, we investigated striatal structural plasticity in response to hearing loss in Area X, the avian vocal basal ganglia, in adult male zebra finch (Taeniopygia guttata). We observed a rapid elongation of dendritic spines, by approximately 13%, by day 3 after deafening, and a considerable increase in spine synapse density, by approximately 61%, by day 14 after deafening, compared with the controls with an intact cochlea.

View Article and Find Full Text PDF

Purpose: We aimed to develop a diagnostic platform to capture the transcriptomic resemblance of individual adult diffuse gliomas of WHO grades II to IV to neural development and the genomic signature associated with glioma progression.

Experimental Design: Based on the EM/PM classification scheme, we designed a RT-PCR-based TaqMan low-density array (TLDA) containing 44 classifier and 4 reference genes. Samples of a training dataset (GSE48865), characterized by RNA-sequencing, were utilized to optimize the TLDA design and to develop a support vector machine (SVM)-based prediction model.

View Article and Find Full Text PDF

Multiple myeloma (MM) is the second most common hematologic cancer, characterized by abnormal accumulation of plasma cells in the bone marrow. The extensive biological and clinical heterogeneity of MM hinders effective treatment and etiology research. Several molecular classification systems of prognostic impact have been proposed, but they do not predict the response to treatment nor do they correlate to plasma cell development pathways.

View Article and Find Full Text PDF

Background: In the nervous system, the neurons communicate through synapses. The size, morphology, and connectivity of these synapses are significant in determining the functional properties of the neural network. Therefore, they have always been a major focus of neuroscience research.

View Article and Find Full Text PDF

Inter-individual variability causing elevated signaling of receptor tyrosine kinases (RTK) may have hampered the efficacy of targeted therapies. We developed a molecular signature for clustering adult diffuse gliomas based on the extent of RTK pathway activities. Glioma gene modules co-expressed with NF1 (NF1-M), Sprouty (SPRY-M) and PTEN (PTEN-M) were identified, their signatures enabled robust clustering of adult diffuse gliomas of WHO grades II-IV from five independent data sets into two subtypes with distinct activities of RAS-RAF-MEK-MAPK cascade and PI3K-AKT pathway (named RMPAhigh and RMPAlow subtypes) in a morphology-independent manner.

View Article and Find Full Text PDF

Deafening elicits a deterioration of learned vocalization, in both humans and songbirds. In songbirds, learned vocal plasticity has been shown to depend on the basal ganglia-cortical circuit, but the underlying cellular basis remains to be clarified. Using confocal imaging and electron microscopy, we examined the effect of deafening on dendritic spines in avian vocal motor cortex, the robust nucleus of the arcopallium (RA), and investigated the role of the basal ganglia circuit in motor cortex plasticity.

View Article and Find Full Text PDF

We hypothesized that key signaling pathways of glioma genesis might enable the molecular classification of gliomas. Gene coexpression modules around epidermal growth factor receptor (EGFR) (EM, 29 genes) or platelet derived growth factor receptor A (PDGFRA) (PM, 40 genes) in gliomas were identified. Based on EM and PM expression signatures, nonnegative matrix factorization reproducibly clustered 1,369 adult diffuse gliomas WHO grades II-IV from four independent databases generated in three continents, into the subtypes (EM, PM and EM(low)PM(low) gliomas) in a morphology-independent manner.

View Article and Find Full Text PDF

Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized.

View Article and Find Full Text PDF

Songbirds have the rare ability of auditory-vocal learning and maintenance. Up to now, the organization and function of the nucleus magnocellularis (NM), the first relay of the avian ascending auditory pathway is largely based on studies in non-vocal learning species, such as chickens and owls. To investigate whether NM exhibits different histochemical properties associated with auditory processing in songbirds, we examined the expression patterns of three calcium-binding proteins (CaBPs), including calretinin (CR), parvalbumin (PV) and calbindin-D28k (CB), and their relations to auditory inputs in NM in adult zebra finches.

View Article and Find Full Text PDF

Signaling of platelet derived growth factor receptor alpha (PDGFRA) is critically involved in the development of gliomas. However, the clinical relevance of PDGFRA expression in glioma subtypes and the mechanisms of PDGFRA expression in gliomas have been controversial. Under the supervision of morphological diagnosis, analysis of the GSE16011 and the Repository of Molecular Brain Neoplasia Data (Rembrandt) set revealed enriched PDGFRA expression in low-grade gliomas.

View Article and Find Full Text PDF

Aim: Living high training low" (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2. In this study, we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in renin-angiotensin system in rats.

Methods: Adult male SD rats were randomly assigned into 4 groups, and trained on living low-sedentary (LLS, control), living low-training low (LLTL), living high-sedentary (LHS) and living high-training low (LHTL) protocols, respectively, for 4 weeks.

View Article and Find Full Text PDF

We show that the learned vocalizations of male and female large-billed crows (Corvus macrorhynchos) are similar and that their functions and physical features show significant differences from those of other oscine species. We investigate whether the song control nuclei of crows show any sexual differences in size, reflecting differences in their singing behavior, and whether these nuclei are different from those of other songbirds in terms of neural connectivity size and relative to the forebrain. Our Nissl staining results reveal that 1) of the four song nuclei examined (HVC; the robust nucleus of the arcopallium [RA]; Area X; and the dorsolateral medial nucleus [DLM]), HVC, RA, and Area X volumes are significantly larger in males than in females, but DLM volume and body and brain weights show no significant gender differences; and 2) the sizes of song nuclei relative to the forebrain are within the range of other oscines.

View Article and Find Full Text PDF

CRMP-4 is regarded to play a role in neuronal differentiation, neurite growth and synapse formation. It has been shown to express in brain areas undergoing plastic changes or neuronal generation. Bird song is a learned, complex behavior.

View Article and Find Full Text PDF

Overexpression of P-glycoprotein (P-gp), the mdr1 gene product, confers multidrug resistance (MDR) to tumor cells and often limits the efficacy of chemotherapy. This study evaluated RNAi for specific silencing of the mdr1 gene and reversion of multidrug resistance. Three different short hairpin RNAs (shRNAs) were designed and constructed in a pSilencer 3.

View Article and Find Full Text PDF

Adult bone marrow mesenchymal stem cells (MSCs) can differentiate into several types of mesenchymal cells, including osteocytes, chondrocytes, and adipocytes, but can also differentiate into non-mesenchymal cells, such as neural cells, under appropriate experimental conditions. Until now, many protocols for inducing neuro-differentiation in MSCs in vitro have been reported. But due to the differences in MSCs' isolation and culture conditions, the results of previous studies lacked consistency and comparability.

View Article and Find Full Text PDF

The hippocampus of songbirds plays an important role in spatial memory, and probably in song learning. Although prolonged neuronal generation and apoptosis are thought to be closely correlated with memory function, natural changes of the number of neurons and in apoptosis in the hippocampus of songbirds have not been fully investigated during development and in the adult. In the current study, we examined developmental changes in the volume and the number of neurons and apoptotic cells in the hippocampus of songbirds (Lonchura striata) from posthatch day (P5) to adulthood.

View Article and Find Full Text PDF