The growing importance of critical infrastructure systems (CIS) makes maintaining their normal operation against deliberate attacks such as terrorism a significant challenge. Combining game theory and complex network theory provides a framework for analyzing CIS robustness in adversarial scenarios. Most existing studies focus on single-layer networks, while CIS are better modeled as multilayer networks.
View Article and Find Full Text PDFAs an inflammatory regulator, intestinal regenerating islet-derived 3 gamma (RegⅢγ) contributes to alleviating liver injury in liver diseases and colitis. However, it is unclear whether hepatic RegⅢγ exerts a vital impact on liver regeneration (LR). In this study, the expression profile and localization of RegⅢγ in LR were demonstrated by microarray analysis, qRT-PCR and immunofluorescence staining.
View Article and Find Full Text PDFJ Magn Reson Imaging
November 2024
Background: Identifying patients at high risk of stroke recurrence is important for stroke prevention and treatment.
Purpose: To explore the characteristics of T1 hyperintense plaques (HIP) and their relationship with stroke recurrence in patients with symptomatic intracranial atherosclerotic stenosis (sICAS).
Study Type: Retrospective.
Objectives: To assess the predictive value of hemodynamic features for stroke relapse in patients with intracranial vertebrobasilar atherosclerotic stenosis treated with percutaneous transluminal angioplasty and stenting (PTAS) using quantitative digital subtraction angiography (q-DSA).
Methods: In this retrospective longitudinal study, patients with intracranial vertebrobasilar atherosclerotic stenosis and who underwent PTAS treatment between January 2012 and May 2020 were enrolled. The q-DSA assessment was performed before and after PTAS.
Objectives: Besides plaque enhancement grade, the incremental value of enhancement-related high-resolution MRI features in defining culprit plaques needs further evaluation. This study was focused on assessing whether plaque enhancement features contribute to culprit plaque identification and further risk stratification.
Methods: We retrospectively studied patients who experienced an acute ischaemic stroke and transient ischaemic attack due to intracranial atherosclerosis from 2016 to 2022.
Entropy (Basel)
February 2022
In the domain of network science, the future link between nodes is a significant problem in social network analysis. Recently, temporal network link prediction has attracted many researchers due to its valuable real-world applications. However, the methods based on network structure similarity are generally limited to static networks, and the methods based on deep neural networks often have high computational costs.
View Article and Find Full Text PDFIntroduction: Imaging-based early warning indicators and feasible stratification of acute ischemic stroke (AIS) patients with hemorrhagic transformation (HT), especially high-risk patients with parenchymal hematoma (PH), are crucial in determining subsequent treatment strategies. This study combined automated ASPECTS software with noncontrast CT (NCCT) and CTA source image (CTASI) attenuation changes using Hounsfield unit (HU) values to predict HT and PH in patients with AIS.
Materials And Methods: We retrospectively enrolled 172 consecutive patients with anterior circulation large-vessel occlusion between 2016 and 2020.
Purpose: This study aimed to use the automated Alberta Stroke Program Early CT Score (ASPECTS) software to assess the value of different CT modalities (non-contrast CT, CT angiography [CTA]-arterial, CTA-venous, and arterial- and venous-phase mismatch-ASPECTS) in predicting the final infarct extent and clinical outcome in large-vessel occlusion stroke.
Methods: This retrospective study included patients with large-vessel occlusion stroke who underwent reperfusion therapy during 2015 to 2019. Correlations between different CT-ASPECTS modalities and follow-up CT-ASPECTS and outcome were determined using Spearman rank correlation coefficient.
J Opt Soc Am A Opt Image Sci Vis
November 2012
Within the generalized Lorenz-Mie theory framework, an analytic solution to Gaussian beam scattering by a rotationally uniaxial anisotropic sphere is presented. The scattered fields as well as the fields within the anisotropic sphere are expanded in terms of infinite series with spherical vector wave functions by using an appropriate expansion of the incident Gaussian beam. The unknown expansion coefficients are determined from a system of linear equations derived from the boundary conditions.
View Article and Find Full Text PDF