Publications by authors named "YingJie Wu"

Dural closure is a crucial step in cranial surgery, essential for preventing complications like cerebrospinal fluid leakage, wound infections, and meningitis. Traditional suturing techniques, however, pose challenges such as technical difficulty and the potential for tissue damage. This retrospective study aimed to assess the safety and effectiveness of a nonsuture dural closure method using medical glue for direct adhesion of a patch to the dura mater.

View Article and Find Full Text PDF

Self-propelled micro/nanomotors (MNMs) represent a groundbreaking advancement in precision drug delivery, offering potential solutions to persistent challenges such as systemic toxicity, limited bioavailability, and nonspecific distribution. By transforming various energy sources into mechanical motion, MNMs are able to autonomously navigate through complex physiological environments, facilitating targeted delivery of therapeutic agents to previously inaccessible regions. However, to achieve efficient in vivo drug delivery, biomedical MNMs must demonstrate their ability to overcome crucial physiological barriers encompassing mucosal surfaces, blood flow dynamics, vascular endothelium, and cellular membrane.

View Article and Find Full Text PDF

Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FF-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose.

View Article and Find Full Text PDF

Immunoglobulin G (IgG) is traditionally recognized as a plasma protein that neutralizes antigens for immune defense. However, our research demonstrates that IgG predominantly accumulates in adipose tissue during obesity development, triggering insulin resistance and macrophage infiltration. This accumulation is governed by neonatal Fc receptor (FcRn)-dependent recycling, orchestrated in adipose progenitor cells and macrophages during the early and late stages of diet-induced obesity (DIO), respectively.

View Article and Find Full Text PDF

A self-propulsion Janus gallium (Ga)/magnesium (Mg) bimetallic micromotor is designed with favorable biocompatibility and antimicrobial properties as a therapeutic strategy for periodontitis. The Janus Ga/Mg micromotors are fabricated by microcontact printing technique to asymmetrically modify liquid metallic gallium onto magnesium microspheres. Hydrogen bubbles produced by the magnesium-water reaction can provide the driving performance of up to 31.

View Article and Find Full Text PDF

Cadmium (Cd) is easily absorbed by rice and enters the food chain, posing a health risk to humans. Plant growth promoting bacteria (PGPB) can help the plant respond to Cd stress, but the mechanism of PGPB for Cd reduction is unclear. Therefore, this study was conducted and found inoculation with a newly isolated Pseudomonas koreensis promoted the growth of rice and reduced its Cd content.

View Article and Find Full Text PDF

Rice is the staple food for 1/3 of the world's population, but soil pollution with cadmium (Cd) is harmful to rice production and human health. Therefore, how to reduce the Cd content in rice grains is a hot topic worldwide. However, so far, little is known about Cd remediation technologies for paddy soils from the perspective of patents.

View Article and Find Full Text PDF

The microRNA156 (miR156) has been widely studied in plants, however, the characterization of the miR156 family of genes in wheat and their expression patterns under abiotic stress are not completely clear. In this study, a total of 20 miR156 family members, referred to as tae-miR156a to tae-miR156t, were identified in wheat with their loci mapped to various chromosomes. These members were divided into five subgroups: miR156a/b/c/d/e/f, miR156g/h/i, miR156j/k, miR156l/m/n/o/p/q, and miR156r/s/t.

View Article and Find Full Text PDF

Background: Vasculopathy underlies diabetic complications, with perivascular adipose tissue (PVAT) playing crucial roles in its development. However, the changes in the cellular composition and function of PVAT, including the specific cell subsets and mechanisms implicated in type 2 diabetes mellitus (T2DM) vasculopathy, remain unclear.

Methods: To address the above issues, we performed single-cell RNA sequencing on the stromal vascular fraction (SVF) of PVAT from normal and T2DM rats.

View Article and Find Full Text PDF

Background: The global incidence of obesity continues to rise, which increases the prevalence of metabolic diseases. We previously demonstrated the beneficial effect of adipose-specific growth hormone receptor (Ghr) knockout (KO) on metabolic parameters in male mice exposed to high fat diet. Although the effect of the growth hormone (GH) axis on lipid metabolism has been well studied, sexual dimorphism has not been considered.

View Article and Find Full Text PDF

Ethylene plays crucial roles in the adaptation to cadmium (Cd) stress. Nevertheless, the impact of endogenous ethylene on radial transport of Cd in different rice cultivars are insufficiently understood. Herein, we investigated how ethylene involved in the formation of endodermal barriers in roots of Nipponbare with low-Cd accumulation and IR32307 with high-Cd accumulation ability and further assessed its influence on Cd radial transport.

View Article and Find Full Text PDF

Primary liver cancer (PLC), which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), remains a leading cause of cancer-related death worldwide. Chronic liver diseases, such as hepatitis B and C infections and metabolic dysfunction-associated steatotic liver disease (MASLD), are key risk factors for PLC. Metabolic reprogramming, a defining feature of cancer, enables liver cancer cells to adapt to the demands of rapid proliferation and the challenging tumor microenvironment (TME).

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202510000-00026/figure1/v/2024-11-26T163120Z/r/image-tiff Microglia, the resident monocyte of the central nervous system, play a crucial role in the response to spinal cord injury. However, the precise mechanism remains unclear.

View Article and Find Full Text PDF

Growth hormone (GH) and gut microbiota are key regulators of metabolism and have been linked to the development and treatment of obesity. Although variations in GH levels are associated with changes in gut microbiota composition, the specific effects of GH on gut microbiota and its role in obesity remain unclear. This study explored the effects of various GH doses (0.

View Article and Find Full Text PDF

The quality of Recombination signal sequences (RSSs), location, and genetics of mammalian V, D, and J genes synergistically affect the recombination frequency of genes; however, the specific regulatory mechanism and efficiency have not been elucidated. By taking advantage of single-cell RNA-sequencing (scRNA-seq) and high-throughput sequencing (HTS) to investigate V(D)J rearrangement characteristics in the CDR3 repertoire, we found that the distal and proximal V genes (or J genes) "to D" gene were involved in rearrangement significantly more frequently than the middle V genes (or J genes) in the TRB locus among various species, including Primates (human and rhesus monkey), Rodentia (BALB/c, C57BL/6, and Kunming mice), Artiodactyla (buffalo), and Chiroptera (Rhinolophus affinis). The RSS quality of the V and J genes affected their frequency in rearrangement to varying degrees, especially when the V-RSSs with recombination signal information content (RIC) score < -45 significantly reduced the recombination frequency of the V gene.

View Article and Find Full Text PDF
Article Synopsis
  • * AMF inoculation yields greater enhancements in phosphorus storage and concentration compared to nitrogen, with more pronounced benefits observed in single species AMF treatments, laboratory settings, and legume plants.
  • * The effectiveness of AMF on plant nutrition is linked to factors like AMF colonization rates, nutrient additions, and water availability, but not the duration of the experiments, emphasizing AMF's vital role in future agricultural practices under changing environmental conditions.
View Article and Find Full Text PDF
Article Synopsis
  • * Research reveals that low concentrations of collagen hydrolysate (15 mg/mL) significantly enhance the stability of red cabbage anthocyanins, extending their half-life by 6.2 times.
  • * The study also shows that collagen hydrolysate forms complexes with anthocyanins, improving their antioxidant properties and revealing interaction details through advanced techniques like microscopy and nuclear magnetic resonance.
View Article and Find Full Text PDF

A primary objective in designing hydrogels for cell culture is recreating the cell-matrix interactions found within human tissues. Identifying the most important biomaterial features for these interactions is challenging because it is difficult to independently adjust variables such as matrix stiffness, stress relaxation, the mobility of adhesion ligands and the ability of these ligands to support cellular forces. In this work we designed a hydrogel platform consisting of interpenetrating polymer networks of covalently crosslinked poly(ethylene glycol) (PEG) and self-assembled peptide amphiphiles (PA).

View Article and Find Full Text PDF

Background: Choledocholithiasis is a common clinical bile duct disease, laparoscopic choledocholithotomy is the main clinical treatment method for choledocholithiasis. However, the recurrence of postoperative stones is a big challenge for patients and doctors.

Aim: To explore the related risk factors of gallstone recurrence after laparoscopic choledocholithotomy, establish and evaluate a clinical prediction model.

View Article and Find Full Text PDF

Objective: To examine and talk about the mechanism of the Huoxue Jiegu compound capsule's effects on osteoblasts and the PI3K/Akt/mTOR signal pathway in rabbits suffering from tibial fractures.

Method: In vitro, CCK8 was used to assess the survival rates. Alizarinred staining was used to evaluate mineralized nodules.

View Article and Find Full Text PDF

The intensive use of chemical fertilizers in China to maintain high crop yields has led to significant environmental degradation and destabilized crop production. Returning straw to soil presents a potential alternative to reduce chemical fertilizer requirements and enhance soil fertility. This study investigates the effects of different nitrogen (N) input levels and straw additions on crop phosphorus (P) uptake and soil P availability based on a long-term N-fertilizer trial.

View Article and Find Full Text PDF

Lactation mastitis is a debilitating inflammatory mammary disease in postpartum animals. Myeloid differentiation primary response protein MyD88 is the key downstream adapter for innate pattern recognition receptor toll-like receptor 4 (TLR4), which plays an important role in inflammation. However, the specific role of MyD88 in mammary epithelial cells in the progression of mastitis has not been investigated.

View Article and Find Full Text PDF

Heavy metal pollution of the soil affects the environment and human health. Masson pine is a good candidate for phytoremediation of heavy metal in mining areas. Microorganisms in the rhizosphere can help with the accumulation of heavy metal in host plants.

View Article and Find Full Text PDF

Scope: Obesity is associated with insulin resistance (IR), which is characterized by endoplasmic reticulum (ER) stress in multiple organs. ER stress in adipose tissue causes metabolic disturbances and activates inflammatory signaling pathways. Puerarin, an isoflavone extracted from Pueraria lobata, exhibits antioxidant, anti-inflammatory, and antidiabetic effects.

View Article and Find Full Text PDF

Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat at -0.

View Article and Find Full Text PDF