Publications by authors named "YingJie Gao"

Objective: Body mass index (BMI) is important for predicting the occurrence of metabolic abnormality, but sex differences exist. We aimed to investigate potential sex differences in the predictive value of BMI for metabolic abnormality and to calculate the optimal BMI cut-offs for predicting metabolic abnormality for each sex.

Methods: Participants ( = 4,623) who attended a health check-up centre continuously in Eastern China between January 2022 and December 2023 were evaluated for metabolic abnormalities.

View Article and Find Full Text PDF

Human P-glycoprotein (hP-gp) is an ATP-binding cassette (ABC) exporter that actively extrudes a wide range of xenobiotics from the cell, thus limiting drug delivery and contributing to multidrug resistance (MDR) in cancers. Recent structural studies have provided insights into how hP-gp binds diverse compounds, but how they are translocated through the membrane remains poorly understood at the atomic level. In this work, we used steered molecular dynamics (SMD) simulations to investigate the molecular mechanism of how hP-gp expels structurally different compounds and which molecular features favor this efflux step.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) poses a significant global health challenge, primarily driven by renal fibrosis, with limited treatment options. Addressing this condition necessitates either targeted medical treatments or dietary interventions. Phytosterols (PS) are cholesterol-like bioactive compounds in various plant-based foods with antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Cortical interneurons generated from ganglionic eminence via a long-distance journey of tangential migration display evident cellular and molecular differences across brain regions, which seeds the heterogeneous cortical circuitry in primates. However, whether such regional specifications in interneurons are intrinsically encoded or gained through interactions with the local milieu remains elusive. Here, we recruit 685,692 interneurons from cerebral cortex and subcortex including ganglionic eminence within the developing human and macaque species.

View Article and Find Full Text PDF

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Electrolysis of natural seawater driven by renewable energy is practically attractive for green hydrogen production. However, because precipitation initiated by an increase in local pH near to the cathode deactivates catalysts or blocks electrolyzer channels, limited catalysts are capable of operating with untreated, natural seawater (., pH 8.

View Article and Find Full Text PDF

The Earth is currently undergoing rapid warming cause of the accumulation in greenhouse gas emissions into the atmosphere and the consequent rise in global temperatures. High temperatures can bring the effects on rice development and growth and thereby decrease rice yield. In this study, we have identified that both JMJ713 and JMJ708 possess distinct histone demethylase activities.

View Article and Find Full Text PDF

Aqueous zinc batteries (AZBs) are considered one of the most promising candidates for grid-scale energy storage. However, achieving a stable electrode-electrolyte interface remains a challenge for developing high-performance AZBs. Herein, taking the Zn||phenazine (PNZ) system as a prototype, where the proton uptake/removal mechanism dominates in the cathode, a carboxylic acid-functionalized cellulose hydrogel electrolyte is designed to simultaneously solve the issues at both the anode and cathode interfaces.

View Article and Find Full Text PDF

Purpose: Given the increasing occurrence of stroke and high-sodium diets (DHIS) over the past 30 years, it is crucial to assess the global, national, and regional impact of DHIS on the burden of stroke.

Methods And Materials: The Global Burden of Diseases Study 2019 provided the study's data. We used the Bayesian meta-regression tool DisMod-MR 2.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) enhance the tumor-killing ability of T-cells in non-small cell lung cancer (NSCLC), improving overall survival (OS) and revolutionizing treatment for advanced stages. However, challenges remain, such as low response rates and the lack of effective markers for selecting candidates. This study evaluated the impact of hemoglobin, albumin, and platelet (HALP), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) on the efficacy of immunotherapy and survival outcomes in advanced NSCLC.

View Article and Find Full Text PDF

Lignin is dietary fiber from plant cell walls with multiple biological antioxidant and anti-inflammatory activities. However, whether lignin protects from ulcerative colitis (UC) and underlying mechanisms is unclear. Herein, UC mouse modeling was established with dextran sulfate sodium (DSS) and treatment with lignin for 1 week.

View Article and Find Full Text PDF

The evolution of inorganic solid electrolytes has revolutionized the field of sustainable organic cathode materials, particularly by addressing the dissolution problems in traditional liquid electrolytes. However, current sulfide-based all-solid-state lithium-organic batteries still face challenges such as high working temperatures, high costs, and low voltages. Here, we design an all-solid-state lithium battery based on a cost-effective organic cathode material phenanthrenequinone (PQ) and a halide solid electrolyte LiZrCl.

View Article and Find Full Text PDF
Article Synopsis
  • Silicon-based anodes face challenges like low initial Coulombic efficiency (ICE) and durability problems, making them less effective in batteries.
  • Traditional pre-lithiation methods can be unsafe due to unstable chemicals, highlighting the need for safer alternatives.
  • This study introduces a lithium-enriched silicon/graphite material with over 110% ICE and excellent stability, achieved through a unique pre-storage method that enhances performance while remaining stable in air and water.
View Article and Find Full Text PDF

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the immunohistochemical data shown in Fig. 1A on p. 5, colony formation data shown in Figs.

View Article and Find Full Text PDF

The human multidrug transporter P-glycoprotein (P-gp) is physiologically essential and of key relevance to biomedicine. Recent structural studies have shed light on the mode of inhibition of the third-generation inhibitors for human P-gp, but the molecular mechanism by which these inhibitors enter the transmembrane sites remains poorly understood. In this study, we utilized all-atom molecular dynamics (MD) simulations to characterize human P-gp dynamics under a potent inhibitor, tariquidar, bound condition, as well as the atomic-level binding pathways in an explicit membrane/water environment.

View Article and Find Full Text PDF

Propose: This meta-analysis aimed to determine whether 3D-printed artificial vertebral bodies (AVBs) have superior clinical efficacy compared to conventional titanium mesh cages (TMCs) for spinal reconstruction after total en bloc spondylectomy (TES) for spinal tumors.

Methods: Electronic databases, including PubMed, OVID, ScienceDirect, Embase, CINAHL, Web of Science, Cochrane Library, WANFANG, and CNKI, were searched to identify clinical trials investigating 3D-printed AVB versus conventional TMC from inception to August 2023. Data on the operation time, intraoperative blood loss, preoperative and postoperative visual analogue scale (VAS) scores, preoperative and postoperative Frankel classification of spinal cord injury, vertebral body subsidence, and early complications were collected from eligible studies for a meta-analysis.

View Article and Find Full Text PDF

The recently surged halide-based solid electrolytes (SEs) are great candidates for high-performance all-solid-state batteries (ASSBs), due to their decent ionic conductivity, wide electrochemical stability window, and good compatibility with high-voltage oxide cathodes. In contrast to the crystalline phases in halide SEs, amorphous components are rarely understood but play an important role in Li-ion conduction. Here, we reveal that the presence of amorphous component is common in halide-based SEs that are prepared via mechanochemical method.

View Article and Find Full Text PDF

Glassy Na-ion solid-state electrolytes (GNSSEs) are an important group of amorphous SSEs. However, the insufficient ionic conductivity of state-of-the-art GNSSEs at room temperature lessens their promise in the development of all-solid-state Na-ion batteries (ASSNIBs) with high energy density and improved safety. Here we report the discovery of a new sodium superionic glass, 0.

View Article and Find Full Text PDF

Air pollution and aging population have caused increasing rates of lung diseases and elderly lung diseases year by year. At the same time, the outbreak of COVID-19 has brought challenges to the medical system, which placed higher demands on preventing lung diseases and improving diagnostic efficiency to some extent. Artificial intelligence can alleviate the burden on the medical system by analyzing lung sound signals to help to diagnose lung diseases.

View Article and Find Full Text PDF

Background: Due to the viral infection, chronic inflammation significantly increases the likelihood of hepatocellular carcinoma (HCC) development. Nevertheless, an inflammation-based signature aimed to predict the prognosis and therapeutic effect in virus-related HCC has rarely been established.

Method: Based on the integrated analysis, inflammation-associated genes (IRGs) were systematically assessed.

View Article and Find Full Text PDF

Background: Current research studies have suggested that glucose deprivation (GD)-based tumor microenvironment (TME) can promote epithelial-mesenchymal transition (EMT) of tumor cells, leading to tumor invasion and metastasis. However, no one has yet studied detailedly the synthetic studies that include GD features in TME with EMT status. In our research, we comprehensively developed and validated a robust signature regarding GD and EMT status to provide prognostic value for patients with liver cancer.

View Article and Find Full Text PDF

Taking advantage of bipolar electrochemistry and a glass nanopipette, continuous single bubbles can be controlled which are generated and detached from a nanometer-sized area of confined electrochemical catalysts. The observed current oscillations offer opportunities to rapidly collect data for the statistical analysis of single-bubble generation on and departure from the catalysts.

View Article and Find Full Text PDF

Background: Mitochondria are remarkably dynamic organelles encapsulated by bilayer membranes. The dynamic properties of mitochondria are critical for energy production.

Aims: The aim of our study is to investigate the global status and trends of mitochondrial dynamics research and predict popular topics and directions in the field.

View Article and Find Full Text PDF

The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules.

View Article and Find Full Text PDF

Single-nucleotide polymorphisms (SNPs) as the most important type of genetic variation are widely used in describing population characteristics and play vital roles in animal genetics and breeding. Large amounts of population genetic variation resources and tools have been developed in human, which provided solid support for human genetic studies. However, compared with human, the development of animal genetic variation databases was relatively slow, which limits the genetic researches in these animals.

View Article and Find Full Text PDF