Echo state network (ESN) has been successfully applied to industrial soft sensor field because of its strong nonlinear and dynamic modeling capability. Nevertheless, the traditional ESN is intrinsically a supervised learning technique, which only depends on labeled samples, but omits a large number of unlabeled samples. In order to eliminate this limitation, this work proposes a semi-supervised ESN method assisted by a temporal-spatial graph regularization (TSG-SSESN) for constructing soft sensor model with all the available samples.
View Article and Find Full Text PDFAs one emerging reservoir modeling method, cycle reservoir with regular jumps (CRJ) provides one effective tool for many time series analysis tasks such as ship heave motion prediction. However, the shallow learning structure of single CRJ model limits its memory capacity and leads to unsatisfactory prediction performance. In order to pursue the stronger dynamic characteristic description of time series data, a delayed deep CRJ model is presented in this paper by integrating the deep learning framework with delay links and the evolutionary optimization for mixed-integer problem.
View Article and Find Full Text PDFIn order to optimize the operating points of the dissolved oxygen concentration and the nitrate level in a wastewater treatment plant (WWTP) benchmark, a data-driven adaptive optimal controller (DDAOC) based on adaptive dynamical programming is proposed. This DDAOC consists of an evaluation module and an optimization module. When a certain group of operating points is given, first the evaluation module estimates the energy consumption and the effluent quality in the future under this policy, and then the optimization module adjusts the operating points according to the evaluation result generated by the evaluation module.
View Article and Find Full Text PDF