Dissolved organic matter (DOM) is a heterogeneous pool of compounds and exhibits diverse adsorption characteristics with or without phosphorous (P) competition. The impacts of these factors on the burial and mobilization of organic carbon and P in aquatic ecosystems remain uncertain. In this study, an algae-derived DOM (ADOM) and a commercially available humic acid (HA) with distinct compositions were assessed for their adsorption behaviors onto iron (oxy)hydroxides (FeOx), both in the absence and presence of phosphate.
View Article and Find Full Text PDFHumic acid (HA) and phosphate interactions play a vital role in the biogeochemical cycle of carbon and nutrients and thus the trophic state of a lake. The adsorption behavior of HAs to sediments in the absence and presence of phosphate was investigated in this study. Three types of HAs were used, AHA from algae-dominated lake sediments, MHA from macrophyte-dominated lake sediments, and a reference HA (RHA) with terrestrial sources.
View Article and Find Full Text PDFAgricultural land use leads to significant changes in both the quality (e.g., sources and compositions) and quantity of dissolved organic matter (DOM) exported from terrestrial to aquatic ecosystems.
View Article and Find Full Text PDFHuan Jing Ke Xue
April 2021
A large amount of intracellular dissolved organic matter (I-DOM) is released during the senescent phase of phytoplankton cultures. This research investigated the bio-incubation of I-DOM of cyanobacteria in Lake Taihu under various temperatures (20, 25, and 30℃) and I-DOM initial concentrations (5, 10, and 20 mg·L) with the aid of ultraviolet-visible spectroscopy (UV-Vis) and three-dimensional fluorescence matrix-parallel factor (EEM-PARAFAC). I-DOM was effectively degraded during the incubation.
View Article and Find Full Text PDFHuman activities can alter dissolved organic matter (DOM) in lakes through both direct (i.e., exporting DOM of anthropogenic sources) and indirect effects (i.
View Article and Find Full Text PDFHuman land use has led to significant changes in the character of dissolved organic matter (DOM) in lotic ecosystems. These changes are expected to have important environmental and ecological consequences. However, high spatiotemporal variability has been reported in previous studies, and the underlying mechanisms remain inadequately understood.
View Article and Find Full Text PDFIn this study, N-doped Ta2O5 samples which have strong absorption in visible domain, were prepared by the nitridation of Ta2O5 under NH4 flow and then added into photo-Fenton-like system to enhance Fe3+ reduction and atrazine degradation under visible light irradiation. The sample prepared at 700 degrees C under a NH3 flow rate of 0.3 L x min(-1) for 6 h showed the highest level of photocatalytic activity for Fe3+ reduction.
View Article and Find Full Text PDF