Background: Epidemiologic and in vitro studies suggest independent linkages between poor folate and/or vitamin B-12 nutrition, genomic human papillomavirus (HPV) type 16 viral integration, and cancer. However, there is no direct evidence in vivo to support the causative role of poor folate nutrition in HPV16 integration into the cellular genome.
Objective: We tested the hypothesis that folate deficiency enables the integration of HPV16 into the genome of HPV16-harboring keratinocytes, and could thereby influence earlier transformation of these cells to cancer in an animal model.
Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded.
View Article and Find Full Text PDFAlthough HPV16 transforms infected epithelial tissues to cancer in the presence of several co-factors, there is insufficient molecular evidence that poor nutrition has any such role. Because physiological folate deficiency led to the intracellular homocysteinylation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and activated a nutrition-sensitive (homocysteine-responsive) posttranscriptional RNA operon that included interaction with HPV16 L2 mRNA, we investigated the functional consequences of folate deficiency on HPV16 in immortalized HPV16-harboring human (BC-1-Ep/SL) keratinocytes and HPV16-organotypic rafts. Although homocysteinylated hnRNP-E1 interacted with HPV16 L2 mRNA cis-element, it also specifically bound another HPV16 57-nucleotide poly(U)-rich cis-element in the early polyadenylation element (upstream of L2L1 genes) with greater affinity.
View Article and Find Full Text PDFThe mechanism underlying the sensing of varying degrees of physiological folate deficiency, prior to adaptive optimization of cellular folate uptake through the translational up-regulation of folate receptors (FR) is unclear. Because homocysteine, which accumulates intracellularly during folate deficiency, stimulated interactions between heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and an 18-base FR-α mRNA cis-element that led to increased FR biosynthesis and net up-regulation of FR at cell surfaces, hnRNP-E1 was a plausible candidate sensor of folate deficiency. Accordingly, using purified components, we evaluated the physiological basis whereby L-homocysteine triggered these RNA-protein interactions to stimulate FR biosynthesis.
View Article and Find Full Text PDFBirth Defects Res A Clin Mol Teratol
January 2005
Background: Homocysteine, which increases in folate deficiency, can upregulate folate receptors (FR) at the translational level by increasing the interaction between a short cis-element in the 5'-untranslated region of FR-alpha mRNA and heterogeneous nuclear ribonucleoprotein-E1 (hnRNP-E1). Perturbation of this RNA-protein interaction on GD8.5 induces neural tube defects and neurocristopathies in mice.
View Article and Find Full Text PDFCellular acquisition of folate is mediated by folate receptors (FRs) in many malignant and normal human cells. Although FRs are upregulated in folate deficiency and downregulated following folate repletion, the mechanistic basis for this relationship is unclear. Previously we demonstrated that interaction of an 18-base cis-element in the 5'-untranslated region of FR mRNA and a cystolic trans-factor (heterogeneous nuclear ribonucleoprotein E1 [hnRNP E1]) is critical for FR synthesis.
View Article and Find Full Text PDF