Publications by authors named "Ying-Rui Liu"

Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology.

View Article and Find Full Text PDF

A series of novel pyrazole peptidomimetics was synthesized from 3-aryl-1-arylmethyl-1H-pyrazole-5-carboxylic acid and amino acid ester. Structures of the compounds were characterized by means of IR, (1)H NMR and mass spectroscopy. Compounds 5e and 5k suppress effectively the growth of A549 lung cancer cells.

View Article and Find Full Text PDF

A series of fluorescent compounds, containing pyrazolo[1,5-a]pyrazin-4(5H)-one moiety, were designed and synthesized from ethyl 1-(2-oxo-2-phenylethyl)-3-phenyl-1H-pyrazole-5-carboxylates. The structures of the compounds have been confirmed by IR, (1)H NMR, HRMS and X-ray crystal diffraction. The optical properties of the compounds were investigated by UV-vis absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

A series of novel oxime-containing pyrazole derivatives were synthesized by the reaction of ethyl 3-phenyl-1H-pyrazole-5-carboxylate derivatives and 2-bromo-1-phenylethanone followed by the reaction with hydroxylamine hydrochloride. The structures were determined by IR, (1)H NMR, HRMS, and X-ray analysis. A dose- and time-dependent inhibition of proliferation was observed in A549 lung cancer cell after compound treatment.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) has a high incidence of long-term morbidity. Manganese-enhanced MRI (MEMRI) provides high contrast structural and functional detail of the brain in-vivo. The study utilized serial MEMRI scanning in the fluid percussion injury (FPI) rat's model to assess long-term changes in the brain following TBI.

View Article and Find Full Text PDF

Purpose: To report the detection of structural and functional biological changes in living animals using small animal in vivo MRI that complements traditional ex vivo histological techniques. We report the development and validation of the application of large deformation high dimensional mapping (HDM-LD) segmentation for the hippocampus in the rat.

Materials And Methods: High resolution volumetric T2 weighted MRI images were acquired at 4.

View Article and Find Full Text PDF