Gastric cancer (GC) is one of the most frequent and lethal malignancies in the world. However, our understanding of the mechanisms underlying its initiation and progression is limited. Here, we generate a series of primary GC models in mice with genome-edited gastric organoids, which elucidate the genetic drivers for sequential transformation from dysplasia to well-differentiated and poorly differentiated GC.
View Article and Find Full Text PDFTo better understand the resistance mechanism of non-small cell lung cancers (NSCLCs) to gefitinib, the metabolic profiles of gefitinib-resistant A549 cells and gefitinib-sensitive PC-9 cells were analyzed with a metabolomics analytical platform. A549 and PC-9 cells exhibited significant differences in the levels of glutamine-related metabolites. After gefitinib treatment, the glutamine level decreased in A549 cells but showed no change in PC-9 cells.
View Article and Find Full Text PDFArresting cell cycle has been one of the most common approaches worldwide in cancer therapy. Specifically, arresting cells in the G2/M phase is a promising therapeutic approach in the battle against lung cancer. In the present study, we demonstrated the anticancer activities and possible mechanism of compound #2714, which can prompt G2/M phase arrest followed by cell apoptosis induction in Lewis lung carcinoma LL/2 cells.
View Article and Find Full Text PDFSunitinib based adjuvant chemotherapy combined with chloroquine (CQ) for the treatment of renal cell carcinoma (RCC) is in clinical trials; however, its anti-RCC effect and the mechanism remain unclear. In the present study, the anti-RCC effect of sunitinib with CQ and the underlying mechanism was investigated. An MTT assay demonstrated that CQ enhanced the proliferation inhibitory effect of sunitinib against the OS-RC-2 RCC cell line.
View Article and Find Full Text PDFCaenorhabditis elegans is one of the most important model organisms in the study of biology. It is ideal for laboratory teaching due to its short life cycle and low cost. It enriches the teaching content and can motivate students' interest of learning.
View Article and Find Full Text PDFCisplatin is a widely used antineoplastic drug, while its nephrotoxicity limits the clinical application. Although several mechanisms contributing to nephrotoxicity have been reported, the direct protein targets are unclear. Herein we reported the synthesis of 29 cisplatin derivatives and the structure-toxicity relationship (STR) of these compounds with MTT assay in human renal proximal tubule cells (HK-2) and pig kidney epithelial cells (LLC-PK1).
View Article and Find Full Text PDFBackground: Gastric cancer is the fourth most common cancer and the second most deadly cancer worldwide. Study on molecular mechanisms of carcinogenesis will play a significant role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to identify the potential biomarkers for the early diagnosis of gastric cancer.
View Article and Find Full Text PDFCancer cells activate autophagy in response to anticancer therapies. Autophagy induction is a promising therapeutic approach to treat cancer. In a previous study, YL4073 inhibited the growth of liver cancer and induced liver cancer cell apoptosis.
View Article and Find Full Text PDFBackground: The lymph node metastasis is a key early step of the tumor metastatic process. VEGFD-mediated tumor lymphangiogenesis plays a key role, since down-regulation of p-VEGFR-3 could block the lymph node metastasis. YL529 has been reported to possess potent anti-angiogenesis and antitumor activities; however, its roles in tumor-associated lymphangiogenesis and lymphatic metastasis remain unclear.
View Article and Find Full Text PDFLysine specific demethylase 1 (LSD1) plays an important role in regulating histone lysine methylation at residues K4 and K9 on histone H3 and is recognized as an attractive therapeutic target in multiple malignancies. In this study, a series of novel (E)-N'-(2,3-dihydro-1H-inden-1-ylidene) benzohydrazides were synthesized and biologically evaluated for their potential LSD1 inhibitory effect. Among them, compounds 5a and 5n showed the most potent LSD1 inhibitory activity with IC50 values of 1.
View Article and Find Full Text PDFA series of quinoline derivatives was synthesized and biologically evaluated as Enhancer of Zeste Homologue 2 (EZH2) inhibitors. Structure-activity relationship (SAR) studies led to the discovery of 5-methoxy-2-(4-methyl-1,4-diazepan-1-yl)-N-(1-methylpiperidin-4-yl)quinolin-4-amine (5k), which displayed an IC50 value of 1.2 μM against EZH2, decreased global H3K27me3 level in cells and also showed good anti-viability activities against two tumor cell lines.
View Article and Find Full Text PDFA series of 3-(phenylethynyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine derivatives were designed and synthesized. Structure-activity relationship (SAR) analysis of these compounds led to the discovery of compound 1j, which showed the highest inhibitory potency against the Src kinase and the most potent antiviability activity against the typical TNBC cell line MDA-MB-231 among all the synthesized compounds. Further kinase inhibition assays showed that compound 1j was a multikinase inhibitor and potently inhibited Src (IC50 = 0.
View Article and Find Full Text PDFDrug-induced ototoxicity, as a toxic side effect, is an important issue needed to be considered in drug discovery. Nevertheless, current experimental methods used to evaluate drug-induced ototoxicity are often time-consuming and expensive, indicating that they are not suitable for a large-scale evaluation of drug-induced ototoxicity in the early stage of drug discovery. We thus, in this investigation, established an effective computational prediction model of drug-induced ototoxicity using an optimal support vector machine (SVM) method, GA-CG-SVM.
View Article and Find Full Text PDFSpecific biopharmaceutics classification investigation and study on phamacokinetic profile of a novel drug candidate (2-methylcarbamoyl-4-{4-[3- (trifluoromethyl) benzamido] phenoxy} pyridinium 4-methylbenzenesulfonate monohydrate, NCE) were carried out. Equilibrium solubility and intrinsic dissolution rate (IDR) of NCE were estimated in different phosphate buffers. Effective intestinal permeability (P(eff)) of NCE was determined using single-pass intestinal perfusion technique in rat duodenum, jejunum and ileum at three concentrations.
View Article and Find Full Text PDFA series of novel benzamide derivatives were prepared and evaluated using cell-based measurements. Among these compounds, 10f significantly inhibited Hedgehog signaling and showed equivalent or more potency than GDC-0449 in different tests. Furthermore, compound 10f potently inhibited the proliferation of Daoy, a medulloblastoma cell line that is reported to be resistant to GDC-0449, which indicated a promising prospect in the treatment of Hedgehog signaling pathway related cancer in clinical trial.
View Article and Find Full Text PDFBackground: Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal cancer is important for developing therapeutic approaches and molecular diagnosis.
Methods: Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in biological systems.
Background: The biomarker identification of human esophageal cancer is critical for its early diagnosis and therapeutic approaches that will significantly improve patient survival. Specially, those that involves in progression of disease would be helpful to mechanism research.
Methods: In the present study, we investigated the distinguishing metabolites in human esophageal cancer tissues (n = 89) and normal esophageal mucosae (n = 26) using a (1)H nuclear magnetic resonance ((1)H-NMR) based assay, which is a highly sensitive and non-destructive method for biomarker identification in biological systems.
Combination therapies are urgently needed for optimal clinical benefit, but an efficient strategy for rational discovery of drug combinations, especially combinations of experimental drugs, is still lacking. Consequently, we proposed here a network-based computational method to identify novel synergistic drug combinations. A large-scale drug combination network (DCN), which provides an alternative way to study the underlying mechanisms of drug combinations, was constructed by integrating 345 drug combination relationships, 1293 drug-target interactions and 15134 target-protein interactions.
View Article and Find Full Text PDFNanomaterials have unique physicochemical properties compared with those bulk materials of the same composition. Possible undesirable results of these capabilities are harmful interactions with biological systems and the environment, with the potential to generate toxicity. A number of studies on the effects of Nanomaterials in vitro and in vivo systems have been published.
View Article and Find Full Text PDFHepatocellular carcinoma is one of the most common cancers in worldwide. We previously reported a novel thienopyridine derivative 3-amino-6-(3,4-dichlorophenyl) thieno[2,3-b]pyridine-2-carboxamide (SKLB70359) which possesses anticancer activity against hepatocellular carcinoma. In present study, we further investigated its anticancer activity and possible mechanism.
View Article and Find Full Text PDFCore 1 beta 1,3-galactosyltransferase also known as T-antigen-synthase or T-synthase is a key enzyme for the synthesis of the common core 1 O-glycan structure (T-antigen). Although T-synthase is known to be important in human immune-related diseases, the effects of T-synthase and T-antigen on host immune responses remain poorly defined. In this study, a T-synthase-specific short hairpin RNA (shRNA) was transfected into murine colon carcinoma CT26 cells or mouse muscle tissues via intramuscular electroporation to assess the effects of T-synthase on T cells and cytokines.
View Article and Find Full Text PDFA series of N-3-substituted 7-aminopyrido[2,3-d]pyrimidin-6-carbonitrile derivatives was readily synthesized and their anti-proliferative activities on five types of tumor cells were evaluated through a cell-based phenotypic screening approach. Compound 3k was found to be potent on human colon cancer SW620 cells with an IC(50) value of 12.5 mM.
View Article and Find Full Text PDF