Publications by authors named "Ying-J Du"

Detailed structural studies were made of polyurethane catheter surfaces modified with a covalent antithrombin-heparin (ATH) complex that has superior anticoagulant activity compared to unfractionated heparin. ATH was grafted onto polyurethane catheters by surface film preparation involving a three-step process: (1) activation of ATH through functionalized poly(ethylene glycol) (PEG), (2) base-coating treatment of the polyurethane surface and (3) final attachment of ATH onto the surface by free radical polymerization. With the application of base coating, composed of polyhydroxyethylmethacrylates and poly(ethylene oxide) (PEO), the coating process could easily be transferred to other biomaterials by adjusting the base-coating composition.

View Article and Find Full Text PDF

Linkage disequilibrium (LD) analyses play a fundamental role in gene mapping, both as a tool for fine mapping of complex trait gene and in genome-wide association studies. The use of LD analyses in practice depends crucially on the understanding of the patterns of LD in the genome. In the present study, a total of 36 SNP were selected initially in a region (200 kb) of Contig.

View Article and Find Full Text PDF

Highly anticoagulant covalent antithrombin-heparin complex (ATH) was covalently grafted onto polyurethane catheters to suppress adsorption/activation of procoagulant proteins and enhance adsorption/activation of anticoagulant proteins for blood compatibility. Consistency of catheter coating was demonstrated using immunohistochemical visualization of ATH. The ability of the resulting immobilized ATH heparin chains to bind antithrombin (AT) from plasma, as measured by binding of (125)I-radiolabeled AT, was greater than that for commercially-available heparin-coated catheters, and much greater than for uncoated catheters.

View Article and Find Full Text PDF

Covalent complexes of antithrombin (AT) and heparin (ATH) have superb anticoagulant activity towards thrombin and factor Xa. Stability of polyurethane central venous catheters covalently modified with radiolabeled ATH was studied using a roller pump with saline or protease P-5147. Saline wash removed loosely bound ATH molecules to decrease graft density from 26 to 12 pmol/cm2.

View Article and Find Full Text PDF

Catheter use has been associated with an increased risk of thrombotic complications. The objective was to make catheters less thrombogenic with the use of antithrombin-heparin covalent complex (ATH). The antithrombotic activity of ATH-coated catheters was compared to uncoated (control) and heparincoated catheters in an acute rabbit model of accelerated occluding clot formation.

View Article and Find Full Text PDF