Publications by authors named "Ying-Hsiu Liu"

Diffuse midline gliomas (DMGs) are pediatric high-grade brain tumors in the thalamus, midbrain, or pons; the latter subgroup are termed diffuse intrinsic pontine gliomas (DIPG). The brain stem location of these tumors limits the clinical management of DIPG, resulting in poor outcomes for patients. A heterozygous, somatic point mutation in one of two genes coding for the noncanonical histone H3.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7.

View Article and Find Full Text PDF

Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes.

View Article and Find Full Text PDF

Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by insufficient levels of the Survival of Motor Neuron (SMN) protein. SMN is expressed ubiquitously and functions in RNA processing pathways that include trafficking of mRNA and assembly of snRNP complexes. Importantly, SMA severity is correlated with decreased snRNP assembly activity.

View Article and Find Full Text PDF

Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS.

View Article and Find Full Text PDF

Dipeptidyl peptidase (DPP)-4 inhibitors increase circulating levels of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide which may promote β-cell proliferation and survival. This study tested if DPP-4 inhibition with MK-0431 is beneficial for diabetic mice syngeneically transplanted with a marginal number of islets. We syngeneically transplanted 150 C57BL/6 mouse islets under the kidney capsule of each streptozotocin-diabetic mouse and then treated recipients with (n = 21) or without (n = 17) MK-0431 (30 mg/kg/day, po) for 6 weeks.

View Article and Find Full Text PDF

It has been shown that all-trans retinoid acid (ATRA) hinders the development of autoimmune diabetes by inducing immune tolerance status. Meanwhile, exendin-4 increases beta-cell function and mass. Thus, we hypothesized that ATRA and exendin-4 combination therapy would prevent and reverse autoimmune diabetes.

View Article and Find Full Text PDF

There is at present no cure or effective therapy for spinal muscular atrophy (SMA), a neurodegenerative disease that is the leading genetic cause of infant mortality. SMA usually results from loss of the SMN1 (survival of motor neuron 1) gene, which leads to selective motor neuron degeneration. SMN2 is nearly identical to SMN1 but has a nucleotide replacement that causes exon 7 skipping, resulting in a truncated, unstable version of the SMA protein.

View Article and Find Full Text PDF