In mammalian ovary, the primordial follicle pool serves as the source of developing follicles and fertilizable ova. To maintain the normal length of female reproductive life, the primordial follicles must have adequate number and be kept in a quiescent state before menopause. However, the molecular mechanisms underlying primordial follicle survival are poorly understood.
View Article and Find Full Text PDFOocyte meiotic maturation failure and chromosome abnormality is one of the main causes of infertility, abortion, and diseases. The mono-orientation of sister chromatids during the first meiosis is important for ensuring accurate chromosome segregation in oocytes. MEIKIN is a germ cell-specific protein that can regulate the mono-orientation of sister chromatids and the protection of the centromeric cohesin complex during meiosis I.
View Article and Find Full Text PDFThe timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins.
View Article and Find Full Text PDFThe zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.
View Article and Find Full Text PDFSperm-induced Ca rise is critical for driving oocyte activation and subsequent embryonic development, but little is known about how lasting Ca oscillations are regulated. Here it is shown that NLRP14, a maternal effect factor, is essential for keeping Ca oscillations and early embryonic development. Few embryos lacking maternal NLRP14 can develop beyond the 2-cell stage.
View Article and Find Full Text PDFAccurate chromosome segregation, monitored by the spindle assembly checkpoint (SAC), is crucial for the production of euploid cells. Previous in vitro studies by us and others showed that Mad2, a core member of the SAC, performs a checkpoint function in oocyte meiosis. Here, through an oocyte-specific knockout approach in mouse, we reconfirmed that Mad2-deficient oocytes exhibit an accelerated metaphase-to-anaphase transition caused by premature degradation of securin and cyclin B1 and subsequent activation of separase in meiosis I.
View Article and Find Full Text PDFAlternative splicing expands the transcriptome and proteome complexity and plays essential roles in tissue development and human diseases. However, how alternative splicing regulates spermatogenesis remains largely unknown. Here, using a germ cell-specific knockout mouse model, we demonstrated that the splicing factor is essential for spermatogenesis and male fertility.
View Article and Find Full Text PDFThe anaphase promoting complex/cyclosome (APC/C) and its cofactors CDH1 and CDC20 regulate the accumulation/degradation of CCNB1 during mouse oocyte meiotic maturation. Generally, the CCNB1 degradation mediated by APC/C activity is essential for the transition from metaphase to anaphase. Here, by using siRNA and mRNA microinjection, as well as time-lapse live imaging, we showed that Septin 9, which mediates the binding of septins to microtubules, is critical for oocyte meiotic cell cycle progression.
View Article and Find Full Text PDFMiro1, a mitochondrial Rho GTPase1, is a kind of mitochondrial outer membrane protein involved in the regulation of mitochondrial anterograde transport and its subcellular distribution. Mitochondria influence reproductive processes of mammals in some aspects. Mitochondria are important for oocyte maturation, fertilization and embryonic development.
View Article and Find Full Text PDFJ Cell Physiol
September 2022
AZD1208, a pan-inhibitor that can effectively inhibit PIM kinase, is used for the treatment of advanced solid tumors and malignant lymphomas. Numerous studies have proved its curative effects while its potential cellular toxicity on reproduction was still little known. In this study, we investigated the toxic effects of AZD1208 on mouse oocytes.
View Article and Find Full Text PDFOTSSP167 is an anti-tumor drug significantly inhibiting tumor growth in xenotransplantation studies using mouse breast, lung, prostate, and pancreatic cancer cell lines. Its phase I clinical trial has been completed, indicating its great potential for future treatment of solid tumors. However, its drug-related adverse effects on reproductive systems have not yet been reported.
View Article and Find Full Text PDFMammalian early embryo cells have complex DNA repair mechanisms to maintain genomic integrity, and homologous recombination (HR) plays the main role in response to double-strand DNA breaks (DSBs) in these cells. Polo-like kinase 1 (PLK1) participates in the HR process and its overexpression has been shown to occur in a variety of human cancers. Nevertheless, the regulatory mechanism of PLK1 remains poorly understood, especially during the S and G2 phase.
View Article and Find Full Text PDFMicrotubule plus-end tracking proteins (+TIPs) associate with growing microtubule plus ends and control microtubule dynamics and interactions with different cellular structures during cell division, cell migration and morphogenesis. Microtubule-associated RP/EB family member 2 (MAPRE2/EB2) is a highly conserved core component of +TIPs networks, but whether this molecule is required for mammalian meiotic progression is unknown. In this study, we investigated the expression and function of MAPRE2 during oocyte maturation.
View Article and Find Full Text PDFPrecise regulation of chromosome separation through spindle assembly checkpoint (SAC) during oocyte meiosis is critical for mammalian reproduction. The kinetochore plays an important role in the regulation of SAC through sensing microtubule tension imbalance or missing microtubule connections. Here, we report that kinetochore scaffold 1 (KNL1, also known as CASC5), an outer kinetochore protein, plays a critical role in the SAC function of mouse oocytes.
View Article and Find Full Text PDFThe quality of oocytes is a vital factor for embryo development. Meiotic progression through metaphase I usually takes a relatively long time to ensure correct chromosome separation, a process that is critical for determining oocyte quality. Here, we report that cell division cycle 5-like (Cdc5L) plays a critical role in regulating metaphase-to-anaphase I transition during mouse oocyte meiotic maturation.
View Article and Find Full Text PDFIn mammals, oocytes are arrested at G2/prophase for a long time, which is called germinal vesicle (GV) arrest. After puberty, fully-grown oocytes are stimulated by a gonadotropin surge to resume meiosis as indicated by GV breakdown (GVBD). CCNB1 is accumulated to a threshold level to trigger the activation of maturation promoting factor (MPF), inducing the G2/M transition.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) have essential functions during germline and early embryo development. However, current methods are unable to identify the in vivo targets of a RBP in these low-abundance cells. Here, by coupling RBP-mediated reverse transcription termination with linear amplification of complementary DNA ends and sequencing, we present the LACE-seq method for identifying RBP-regulated RNA networks at or near the single-oocyte level.
View Article and Find Full Text PDFCyclin D-CDK4/6 complex mediates the transition from the G1 to S phase in mammalian somatic cells. Meiotic oocytes pass through the G2/M transition and complete the first meiosis to reach maturation at the metaphase of meiosis II without intervening S phase, while Cyclin D-CDK4/6 complex is found to express during meiotic progression. Whether Cyclin D-CDK4/6 complex regulates meiotic cell cycle progression is not known.
View Article and Find Full Text PDFFront Cell Dev Biol
March 2021
There are two important events in oocyte meiotic maturation, the G2/M transition and metaphase I progression. Thousands of proteins participate in regulating oocyte maturation, which highlights the importance of the ubiquitin proteasome system (UPS) in regulating protein synthesis and degradation. Skp1-Cullin-F-box (SCF) complexes, as the best characterized ubiquitin E3 ligases in the UPS, specifically recognize their substrates.
View Article and Find Full Text PDFParathyroid hormone-related protein (PTHrP), the main cause of humoral hypercalcemia in malignancies, promotes cell proliferation and delays terminal cell maturation during embryonic development. Our previous study reported that PTHrP plays important roles in blastocyst formation, pluripotency gene expression, and histone acetylation during mouse preimplantation embryonic development. In this study, we further investigated the mechanism of preimplantation embryonic development regulated by PTHrP.
View Article and Find Full Text PDFGefitinib is a first-line anti-cancer drug for the treatment of advanced non-small cell lung cancer (NSCLC). It has been reported that gefitinib can generate several drug-related adverse effects, including nausea, peripheral edema, decreased appetite and rash. However, the reproductive toxicity of gefitinib has not been clearly defined until now.
View Article and Find Full Text PDFThe formation of zygote is the beginning of mammalian life, and dynamic epigenetic modifications are essential for mammalian normal development. H3K27 di-methylation (H3K27me2) and H3K27 tri-methylation (H3K27me3) are marks of facultative heterochromatin which maintains transcriptional repression established during early development in many eukaryotes. However, the mechanism underlying establishment and regulation of epigenetic asymmetry in the zygote remains obscure.
View Article and Find Full Text PDF