Publications by authors named "Ying-Chun Dou"

Objectives: Myasthenia gravis (MG) is a classic autoantibody-mediated disease in which pathogenic antibodies target postsynaptic membrane components, causing fluctuating skeletal muscle weakness and fatigue. Natural killer (NK) cells are heterogeneous lymphocytes that have gained increasing attention owing to their potential roles in autoimmune disorders. This study will investigate the relationship between the distinct NK cell subsets and MG pathogenesis.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) is a common concomitant disease of late-onset myasthenia gravis (MG). However, the impacts of DM on the progression of late-onset MG were unclear.

Methods: In this study, we examined the immune response in experimental autoimmune myasthenia gravis (EAMG) rats with DM or not.

View Article and Find Full Text PDF

Guillain-Barré syndrome (GBS), an immune-mediated disorder affecting the peripheral nervous system, is the most common and severe acute paralytic neuropathy. GBS remains to be potentially life-threatening and disabling despite the increasing availability of current standard therapeutic regimens. Therefore, more targeted therapeutics are in urgent need.

View Article and Find Full Text PDF

Background: Recent studies have demonstrated that natural killer (NK) cells can modulate other immune components and are involved in the development or progression of several autoimmune diseases. However, the roles and mechanisms of NK cells in regulating experimental autoimmune myasthenia gravis (EAMG) remained to be illustrated.

Methods: To address the function of NK cells in experimental autoimmune myasthenia gravis in vivo, EAMG rats were adoptively transferred with splenic NK cells.

View Article and Find Full Text PDF

Background: The thymus plays an essential role in the pathogenesis of myasthenia gravis (MG). In patients with MG, natural regulatory T cells (nTreg), a subpopulation of T cells that maintain tolerance to self-antigens, are severely impaired in the thymuses. In our previous study, upregulated nTreg cells were observed in the thymuses of rats in experimental autoimmune myasthenia gravis after treatment with exosomes derived from statin-modified dendritic cells (statin-Dex).

View Article and Find Full Text PDF

After the publication of the original article [1], it came to the authors' attention that there was an error in the originally published version of Fig. 5b. The image of CD4CD25 T cells of the statin-Dex group was unintentionally replaced with the image of CD4CD25 T cells from the control group.

View Article and Find Full Text PDF

Sulfatides have immunomodulatory functions, and play protective roles in multiple autoimmune diseases. In the present study, we showed that sulfatides ameliorated experimental autoimmune neuritis in Lewis rats induced with bovine peripheral myelin, which was associated with decreased proportions of Th1 and Th17 cells. Furthermore, compared control group, cells from sulfatide-treated rats exhibited lower potential in proliferation and IL-17 secretion in the presence of BPM or ConA in vitro.

View Article and Find Full Text PDF

Recent studies have demonstrated the important role of toll-like receptor 9 (TLR9) signalling in autoimmune diseases, but its role in myasthenia gravis (MG) has not been fully established. We show herein that blocking TLR9 signalling via the suppressive oligodeoxynucleotide (ODN) H154 alleviated the symptoms of experimental autoimmune myasthenia gravis (EAMG). With the downregulation of dendritic cells (DCs), TLR9 interruption reduced follicular helper T cells (Tfh) and germinal centre (GC) B cells, leading to decreased antibody production.

View Article and Find Full Text PDF

The Rho/Rho kinase (ROCK) pathway serves as molecular switches in many biological processes including the immune response. ROCK inhibitors lead to amelioration of some autoimmune diseases. The present study was designed to define whether a selective ROCK inhibitor, fasudil, was effective in experimental autoimmune myasthenia gravis (EAMG) and investigate the underlying mechanisms.

View Article and Find Full Text PDF

Background: Previously, we have demonstrated that spleen-derived dendritic cells (DCs) modified with atorvastatin suppressed immune responses of experimental autoimmune myasthenia gravis (EAMG). However, the effects of exosomes derived from atorvastatin-modified bone marrow DCs (BMDCs) (statin-Dex) on EAMG are still unknown.

Methods: Immunophenotypical characterization of exosomes from atorvastatin- and dimethylsulfoxide (DMSO)-modified BMDCs was performed by electron microscopy, flow cytometry, and western blotting.

View Article and Find Full Text PDF

Conventional therapies for autoimmune diseases produce nonspecific immune suppression, which are usually continued lifelong to maintain disease control, and associated with a variety of adverse effects. In this study, we found that spleen-derived dendritic cells (DCs) from the ongoing experimental autoimmune myasthenia gravis (EAMG) rats can be induced into tolerogenic DCs by atorvastatin in vitro. Administration of these tolerogenic DCs to EAMG rats on days 5 and 13 post immunization (p.

View Article and Find Full Text PDF

Peripheral nerve fibres are often increased in lesional skin of atopic dermatitis (AD) patients. We attempted to study nerve fibre profiles, using PGP 9.5 as neuronal marker, in early AD lesions in 10 patients, as compared to non-lesional skin in the same patients and skin from healthy controls.

View Article and Find Full Text PDF

Statins have anti-inflammatory and immune-regulating properties. To investigate the effects of atorvastatin on experimental autoimmune neuritis (EAN), an animal model of Guillain-Barré syndrome (GBS), atorvastatin was administered to Lewis rats immunized with bovine peripheral myelin in complete Freund's adjuvant. We found that atorvastatin ameliorated the clinical symptoms of EAN, decreased the numbers of inflammatory cells as well as IFN-γ(+) and IL-17(+) cells in sciatic nerves, decreased the CD80 expression and increased the number of CD25(+)Foxp3(+) cells in mononuclear cells (MNC), and decreased the levels of IFN-γ in MNC culture supernatants.

View Article and Find Full Text PDF

Dehydroepiandrosterone (DHEA) is an abundant adrenal steroid in serum of humans, and has been reported to have anti-inflammatory, anti-proliferative, and certain immune-regulating properties. Experimental autoimmune neuritis (EAN) is a Th1 cell-mediated animal model of Guillain-Barré syndrome (GBS) in humans. In the present study, DHEA was administered subcutaneously to Lewis rats immunized with bovine peripheral myelin (BPM) in Freund's complete adjuvant.

View Article and Find Full Text PDF

Apolipoprotein E (apoE) down-regulates microglial activation and the secretion of inflammatory molecules in an isoform specific fashion (E2 > E3 > E4); the E4 isoform is over-represented in Alzheimer cases while E2 is under-represented. To better define the role of apoE in neurodegeneration, we contrasted apoE knockout (n = 38) and wild-type mice (n = 41) with respect to seizure activity, mortality, locomotion, hippocampal microglial activation/chemokine receptor expression, and damage to the hippocampus after nasal administration of kainic acid (KA) (water as controls). Mice lacking apoE demonstrated more hunching and less rearing, more damage to neurons in the CA3 region (mean histopathologic score: 3.

View Article and Find Full Text PDF

Evidence suggests that neurotrophins may regulate certain immune functions and inflammation. In the present study, the localization and distribution of nerve growth factor (NGF) and its receptors were explored using immunohistochemical methods, with the aim of detecting the cause of the neurohyperplasia in early lesions of atopic dermatitis (AD). In AD involved skin, strong NGF-immunoreactive (IR) cells were observed in the epidermis.

View Article and Find Full Text PDF