Publications by authors named "Ying-Chun Cheng"

Boron/nitrogen (B/N)-doped polycyclic aromatic hydrocarbons (PAHs) with the multiple resonance (MR) effect are promising for organic light-emitting diodes (OLEDs) because of their narrowband emission and thermally activated delayed fluorescence (TADF) characteristics. Nevertheless, exploring the variety of such emitters is challenging because of the tricky and limited synthetic protocols. Herein, we designed a novel B/N-doped PAH, L-DABNA-1, whose backbone (L-DABNA) could not be achieved via conventional routes (e.

View Article and Find Full Text PDF

Organic light-emitting diodes (OLEDs) exploiting simple binary emissive layers (EMLs) blending only emitters and hosts have natural advantages in low-cost commercialization. However, previously reported OLEDs based on binary EMLs hardly simultaneously achieved desired comprehensive performances, e.g.

View Article and Find Full Text PDF

Atomically separated frontier molecular orbital (FMO) distribution plays a crucial role in achieving narrowband emissions for multiple resonance (MR)-type thermally activated delayed fluorescence emitters. Directly peripherally decorating a MR framework with donor or acceptor groups is a common strategy for developing MR emitters. However, this approach always induces bonding features and thus spectral broadening as a side effect.

View Article and Find Full Text PDF

Hindered by spectral broadening issues with redshifted emission, long-wavelength (e.g., maxima beyond 570 nm) multiple resonance (MR) emitters with full width at half maxima (FWHMs) below 20 nm remain absent.

View Article and Find Full Text PDF

Building blocks and heteroatom alignments are two determining factors in designing multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters. Carbazole-fused MR emitters, represented by CzBN derivatives, and the heteroatom alignments of ν-DABNA are two star series of MR-TADF emitters that show impressive performances from the aspects of building blocks and heteroatom alignments, respectively. Herein, a novel CzBN analog, Π-CzBN, featuring ν-DABNA heteroatom alignment is developed via facile one-shot lithium-free borylation.

View Article and Find Full Text PDF

Developing red thermally activated delayed fluorescence (TADF) emitters concurrently with high efficiency and emission color close to the BT.2020 red standard is an ongoing challenge. Herein, we developed a new red TADF emitter BCN-TPA, in which two identical donors are attached at the para-positions of one fused phenyl ring in the acceptor framework.

View Article and Find Full Text PDF

Multiple resonance (MR) type thermally activated delayed fluorescence (TADF) material is currently a research hotspot in organic light-emitting diodes (OLEDs) due to their high color purity and high exciton utilization. However, there are only a handful of MR-TADF emitters with emissions beyond the blue-to-green region. The very limited emission colors for MR-TADF emitters are mainly caused by the fact that so far molecular modifications of MR-TADF do not offer much change in the emission colors.

View Article and Find Full Text PDF

Multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters have attracted much recent attention due to their narrow emission spectra and high photoluminescence quantum yields (PLQYs). Spectral broadening and concentration quenching at high doping concentrations are two issues currently limiting the development of MR-TADF emitters. However, the origins of these have not been fully clarified so far.

View Article and Find Full Text PDF