Because of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform.
View Article and Find Full Text PDFIntroduction: Circulating tumor cells (CTCs) and their proliferative ability in lung adenocarcinoma (LUAD) were not well-investigated. We developed a protocol combining an efficient viable CTC isolation and in-vitro cultivation for the CTC enumeration and proliferation to evaluate their clinical significance.
Method: The peripheral blood of 124 treatment-naïve LUAD patients were processed by a CTC isolation microfluidics, DS platform, followed by in-vitro cultivation.
Matching the treatment to an individual patient's tumor state can increase therapeutic efficacy and reduce tumor recurrence. Circulating tumor cells (CTCs) derived from solid tumors are promising subjects for theragnostic analysis. To analyze how CTCs represent tumor states, we established cell lines from CTCs, primary and metastatic tumors from a mouse model and provided phenotypic and multiomic analyses of these cells.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) are indicators for the detection, diagnosis, and monitoring of cancers and offer biological information for the development of personalized medicine. Techniques for the specific capture and non-destructive release of CTCs from millions of blood cells remain highly desirable. Here, we present a CTC capture-and-release system using a disulfide-containing poly(carboxybetaine methacrylate) (pCB) hydrogel.
View Article and Find Full Text PDFBackground: This study used NeuN transgenic (NTTg) mice with spontaneous breast tumor development to evaluate the dynamic changes of circulating tumor cells (CTCs) prior to and during tumor development.
Methods: In this longitudinal, clinically uninterrupted study, we collected 75 μL of peripheral blood at the age of 8, 12, 16, and 20 weeks in the first group of five mice, and at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability in the second group of four mice. Diluted blood samples were run through a modified mouse-CMx chip to isolate the CTCs.
A new hemofiltration system was developed to continuously capture circulating tumor cells (CTCs) from a large volume of whole blood using a column that was packed with antifouling zwitterionized silica microspheres. The silica microspheres were modified with sulfobetaine silane (SBSi) to inhibit fouling, resist clogging, and give a high surface wettability and prolonged operation time. Packed microspheres with different diameters formed size-controllable interstitial pores that effectively captured CTCs by ligand-free size selection.
View Article and Find Full Text PDFAn immunomagnetic "nano-net" was designed and synthesized for specifically capturing rare cells of interest from mixtures. The nano-net, Ab@Lipo-MNP-GO, consists of conjugated antibody molecules on a lipid coated magnetic nanoparticle-graphene oxide sheet complex. The magnetism, chemical composition, and the morphology of the construct and its precursors were characterized by SQUID, FTIR, TGA, DLS and SEM, to confirm the feasibility of the synthetic steps and the resulting properties suitable for solution phase immuno-recognition for cell capture.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) have been suggested as the precursors of metastatic cancer. CTC-based characterization has thus been used to monitor tumor status before the onset of metastasis and has shown to be an independent factor. The low abundance of CTCs, however, makes it challenging to employ CTC as a clinical routine, thus making it impossible to address tumor heterogeneity.
View Article and Find Full Text PDFBackground: Circulating tumor cells (CTCs) comprise the high metastatic potential population of cancer cells in the blood circulation of humans; they have become the established biomarkers for cancer diagnosis, individualized cancer therapy, and cancer development. Technologies for the isolation and recovery of CTCs can be powerful cancer diagnostic tools for liquid biopsies, allowing the identification of malignancies and guiding cancer treatments for precision medicine.
Methods: We have used an electrospinning process to prepare poly(lactic-co-glycolic acid) (PLGA) nanofibrous arrays in random or aligned orientations on glass slips.
Epithelial-mesenchymal transition (EMT) is a pivotal mechanism for cancer dissemination. However, EMT-regulated individual cancer cell invasion is difficult to detect in clinical samples. Emerging evidence implies that EMT is correlated to collective cell migration and invasion with unknown mechanisms.
View Article and Find Full Text PDFThis study intends to discuss the effects of participants’ involvement, perceived value, and leisure benefits on recommendation intention in the sport of karate. The questionnaires were collected online by karate clubs on Facebook and included 369 valid participants. The research findings show that karate participants from different places of residence do not display significant differences in involvement, perceived value, leisure benefits, and recommendation intention.
View Article and Find Full Text PDFTo efficiently isolate maximal quantity of circulating tumor cells (CTCs) and circulating tumor cell microembolis (CTMs) from patient blood by antibody coated microfluidics, a multifunctional, pegylated polyamidoamine-dendrimers conjugated supported lipid bilayer surface construct was proposed to enhance accessibility of antibody molecules to the antigen molecules on target CTCs. The combination of a hydrated, stretchable dendrimer and a laterally mobile supported lipid bilayer (SLB) provide attached antibody molecules with 2.5-dimensional chain movement, achieving multivalency between the surface antibody and cell antigen molecules.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) are an important biomarker and their analysis can be considered a form of "liquid biopsy." The purpose of this book chapter is to describe the use of the 4-channel CMx (cells captured in maximum) microfluidic chip, containing special micropatterns coated with an antibody-conjugated supported lipid bilayer (SLB) on its surface, to capture and isolate CTCs from the blood of cancer patients. Captured CTCs are subsequently released by an air foam to an immunofluorescence (IF) staining panel that enables further analysis, including the identification of the primary cancer source of the CTCs.
View Article and Find Full Text PDFAdv Exp Med Biol
October 2017
Cancer is the leading cause of death by disease worldwide, and metastasis is responsible for more than 90% of the mortality of cancer patients. Metastasis occurs when tumor cells leave the primary tumor, travel through the blood stream as circulating tumor cells (CTCs), and then colonize secondary tumors at sites distant from the primary tumor. The capture, identification, and analysis of CTCs offer both scientific and clinical benefits.
View Article and Find Full Text PDFWe design and synthesize EpCAM antibodies with Fc-domain site-specific linkers that allow preferential alignment when coated on microfluidic devices for capturing circulating tumor cells (CTCs) from colorectal cancer patients. The aligned coating is shown to increase the capture efficiency of CTCs and microemboli by 1.6 and 3.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) released from a periampullary or pancreatic cancer can be more frequently detected in the portal than the systemic circulation and potentially can be used to identify patients with liver micrometastases. Aims of this study is to determine if CTCs count in portal venous blood of patients with nonmetastatic periampullary or pancreatic adenocarcinoma can be used as a predictor for subsequent liver metastases. CTCs were quantified in portal and peripheral venous blood samples collected simultaneously during pancreaticoduodenectomy in patients with presumed periampullary or pancreatic adenocarcinoma without image-discernible metastasis.
View Article and Find Full Text PDFEnumeration of circulating tumor cells (CTCs) has been proven as a prognostic marker for metastatic colorectal cancer (m-CRC) patients. However, the currently available techniques for capturing and enumerating CTCs lack of required sensitivity to be applicable as a prognostic marker for non-metastatic patients as CTCs are even more rare. We have developed a microfluidic device utilizing antibody-conjugated non-fouling coating to eliminate nonspecific binding and to promote the multivalent binding of target cells.
View Article and Find Full Text PDFHere we presented a simple and effective membrane mimetic microfluidic device with antibody conjugated supported lipid bilayer (SLB) "smart coating" to capture viable circulating tumor cells (CTCs) and circulating tumor microemboli (CTM) directly from whole blood of all stage clinical cancer patients. The non-covalently bound SLB was able to promote dynamic clustering of lipid-tethered antibodies to CTC antigens and minimized non-specific blood cells retention through its non-fouling nature. A gentle flow further flushed away loosely-bound blood cells to achieve high purity of CTCs, and a stream of air foam injected disintegrate the SLB assemblies to release intact and viable CTCs from the chip.
View Article and Find Full Text PDFBackground: Characterization of circulating tumor cells (CTCs) has been used to provide prognostic, predictive, and pharmacodynamic information in many different cancers. However, the clinical significance of CTCs and circulating tumor microemboli (CTM) in patients with pancreatic ductal adenocarcinoma (PDAC) has yet to be determined.
Methods: In this prospective study, CTCs and CTM were enumerated in the peripheral blood of 63 patients with PDAC before treatment using anti-EpCAM (epithelial cell adhesion molecule)-conjugated supported lipid bilayer-coated microfluidic chips.
Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source.
View Article and Find Full Text PDFBiomicrofluidics
September 2014
We developed a new method for releasing viable cells from affinity-based microfluidic devices. The lumen of a microchannel with a U-shape and user-designed microstructures was coated with supported lipid bilayers functionalized by epithelial cell adhesion molecule antibodies to capture circulating epithelial cells of influx solution. After the capturing process, air foam was introduced into channels for releasing target cells and then carrying them to a small area of membrane.
View Article and Find Full Text PDFThe use of synthetic biomaterials as implantable devices typically is accompanied by considerable nonspecific adsorption of proteins, cells, and bacteria. These may eventually induce adverse pathogenic problems in clinical practice, such as thrombosis and biomaterial-associated infection. Thus, an effective surface coating for medical devices has been pursued to repel nonspecific adsorption from surfaces.
View Article and Find Full Text PDFIn this study, we designed and constructed a series of layer-by-layer polypeptide adsorbed supported lipid bilayer (SLB) films as a novel and label-free platform for the isolation and maintenance of rare populated stem cells. In particular, four alternative layers of anionic poly-l-glutamic acid and cationic poly-l-lysine were sequentially deposited on an anionic SLB. We found that the fetal liver stem/progenitor cells from the primary culture were selected and formed colonies on all layer-by-layer polypeptide adsorbed SLB surfaces, regardless of the number of alternative layers and the net charges on those layers.
View Article and Find Full Text PDFUltrasound Med Biol
September 2014
Herein, we report the evaluation of apoptosis, cell differentiation, neurite outgrowth and differentiation of neural stem/progenitor cells (NSPCs) in response to low-intensity ultrasound (LIUS) exposure. NSPCs were cultured under different conditions, with and without LIUS exposure, to evaluate the single and complex effects of LIUS. A lactic dehydrogenase assay revealed that the cell viability of NSPCs was maintained with LIUS exposure at an intensity range from 100 to 500 mW/cm(2).
View Article and Find Full Text PDFNatural sulfur-containing zwitterionic compounds, l-cysteine (Cys), l-methionine, and glutathionine (GSH), have been employed as surface ligands to prevent protein nonspecific adsorption on planar substrates. These organosulfur compounds form self-assembled monolayers (SAMs) on gold substrates by gold-sulfur interaction. The chemical elements of SAMs were confirmed using x-ray photoelectron spectroscopy.
View Article and Find Full Text PDF