This study investigates the impact of hydrophobic modification on the immunogenicity, cytotoxicity, and inflammatory response of Alaska pollock gelatin (ApGltn) microparticles (MPs). Gelatin, known for its inherent biocompatibility, was modified with decyl group (C10) to explore potential alterations in its interaction with the immune system. Immunogenicity was evaluated through the measurement of material-specific IgM and IgG responses, indicating no significant increase post-modification.
View Article and Find Full Text PDFSaccharomyces cerevisiae, a widely studied yeast known for its industrial applications, is increasingly recognized for its potential in immunomodulation. This study aimed to systematically analyze and compare the immune-modulating properties of various S. cerevisiae strains under controlled experimental conditions.
View Article and Find Full Text PDFWe report the synthesis and characterization of novel 3-aryl indoles as potent and efficacious progesterone receptor (PR) antagonists with potential for the treatment of uterine fibroids. These compounds demonstrated excellent selectivity over other steroid nuclear hormone receptors such as the mineralocorticoid receptor (MR). They were prepared from 2-bromo-6-nitro indole in four to six steps using a Suzuki cross-coupling as the key step.
View Article and Find Full Text PDFSAR about the B-ring of a series of N(2)-aroyl anthranilamide factor Xa (fXa) inhibitors is described. B-ring o-aminoalkylether and B-ring p-amine probes of the S1' and S4 sites, respectively, afforded picomolar fXa inhibitors that performed well in in vitro anticoagulation assays.
View Article and Find Full Text PDFVitamin D receptor (VDR) ligands are therapeutic agents for the treatment of psoriasis, osteoporosis, and secondary hyperparathyroidism. VDR ligands also show immense potential as therapeutic agents for autoimmune diseases and cancers of skin, prostate, colon, and breast as well as leukemia. However, the major side effect of VDR ligands that limits their expanded use and clinical development is hypercalcemia that develops as a result of the action of these compounds mainly on intestine.
View Article and Find Full Text PDF1alpha, 25-Dihydroxyvitamin D3 [1,25-(OH)2D3], the biologically active form of vitamin D, is an important hormone that is critically required for the maintenance of mineral homeostasis and structural integrity of bones. 1,25-(OH)2D3 accomplishes this by facilitating calcium absorption from the gut and by a direct action on osteoblasts, the bone forming cells. Apart form its classical actions on the gut and bone, 1,25-(OH)2D3 and its synthetic analogs also possess potent anti-proliferative, differentiative and immunomodulatory activities.
View Article and Find Full Text PDFWe have recently shown that in colon cancer cells, Vitamin D receptor (VDR) interacts with the catalytic subunit of Ser/Thr protein phosphatases, PP1c and PP2Ac, and induces their enzymatic activity in a ligand-dependent manner. The VDR-PP1c and VDR-PP2Ac interactions were ligand independent in vivo, and 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))-mediated increase in VDR-associated phosphatase activity resulted in dephosphorylation and inactivation of p70S6 kinase in colon cancer cells. Here, we demonstrate that in myeloid leukemia cells, 1,25(OH)(2)D(3) treatment increased the Thr389 phosphorylation of p70S6 kinase.
View Article and Find Full Text PDF1alpha, 25-dihydroxyvitamin D3 [1,25 (OH)(2)D(3)], the active metabolite of vitamin D3, is known for the maintenance of normal skeleton architecture and mineral homeostasis. Apart form these traditional calcemic actions, 1,25 (OH)(3)D(1) and its synthetic analogs are increasingly recognized for their potent anti-proliferative, prodifferentiative and immunomodulatory activities. The calcemic and non-calcemic actions of 1,25 (OH)(2)D(3) and its synthetic analogs are mediated through vitamin D receptor (VDR), which belongs to the superfamily of steroid/thyroid hormone nuclear receptors.
View Article and Find Full Text PDF