Publications by authors named "Ying Xiu Toh"

The ZAKα-driven ribotoxic stress response (RSR) is activated by ribosome stalling and/or collisions. Recent work demonstrates that RSR also plays a role in innate immunity by activating the human NLRP1 inflammasome. Here, we report that ZAKα and NLRP1 sense bacterial exotoxins that target ribosome elongation factors.

View Article and Find Full Text PDF

To combat infectious diseases, vaccines are considered the best prophylactic strategy for a wide range of the population, but even when vaccines are effective, the administration of therapeutic antibodies against viruses could provide further treatment options, particularly for vulnerable groups whose immunity against the viruses is compromised. Therapeutic antibodies against dengue are ideally engineered to abrogate binding to Fcγ receptors (FcγRs), which can induce antibody-dependent enhancement (ADE). However, the Fc effector functions of neutralizing antibodies against SARS-CoV-2 have recently been reported to improve post-exposure therapy, while they are dispensable when administered as prophylaxis.

View Article and Find Full Text PDF

Prior immunological exposure to dengue virus can be both protective and disease-enhancing during subsequent infections with different dengue virus serotypes. We provide here a systematic, longitudinal analysis of B cell, T cell, and antibody responses in the same patients. Antibody responses as well as T and B cell activation differentiate primary from secondary responses.

View Article and Find Full Text PDF

Objective: We sought to investigate the differences in monocyte immune responses to the dengue virus (DENV) in those who previously had either severe disease (past SD) or non-severe dengue (past NSD) following a secondary dengue infection.

Method: Monocytes from healthy individuals who had either past SD (n = 6) or past NSD (n = 6) were infected at MOI one with all four DENV serotypes following incubation with autologous serum. 36-hours post infection, levels of inflammatory cytokines and viral loads were measured in the supernatant and expression of genes involved in viral sensing and interferon signaling was determined.

View Article and Find Full Text PDF

Virus-derived double-stranded RNA (dsRNA) molecules containing a triphosphate group at the 5' end are natural ligands of retinoic acid-inducible gene I (RIG-I). The cellular pathways and proteins induced by RIG-I are an essential part of the innate immune response against viral infections. Starting from a previously published RNA scaffold (3p10L), we characterized an optimized small dsRNA hairpin (called 3p10LG9, 25 nucleotides [nt] in length) as a highly efficient RIG-I activator.

View Article and Find Full Text PDF
Article Synopsis
  • Dengue virus (DENV) is widespread and affects around 400 million people annually, with 96 million cases leading to severe illness in about 500,000 of those.
  • The only existing vaccine has limited efficacy and is only suitable for areas with high dengue rates.
  • Researchers developed a new tetravalent, live-attenuated dengue vaccine using 2'-O-methyltransferase mutants from all four DENV serotypes, which showed promising results in mice and macaques by being both safe and effective at eliciting immunity.
View Article and Find Full Text PDF

A therapy for dengue is still elusive. We describe the neutralizing and protective capacity of a dengue serotype-cross-reactive antibody isolated from the plasmablasts of a patient. Antibody SIgN-3C neutralized all four dengue virus serotypes at nano to picomolar concentrations and significantly decreased viremia of all serotypes in adult mice when given 2 days after infection.

View Article and Find Full Text PDF

The pathogenesis of severe dengue remains unclear, particularly the mechanisms underlying the plasma leakage that results in hypovolaemic shock in a small proportion of individuals. Maximal leakage occurs several days after peak viraemia implicating immunological pathways. Skin is a highly vascular organ and also an important site of immune reactions with a high density of dendritic cells (DCs), macrophages and T cells.

View Article and Find Full Text PDF

Half of the world's population is exposed to the risk of dengue virus infection. Although a vaccine for dengue virus is now available in a few countries, its reported overall efficacy of about 60% is not ideal. Protective immune correlates following natural dengue virus infection remain undefined, which makes it difficult to predict the efficacy of new vaccines.

View Article and Find Full Text PDF

Dengue is endemic in tropical countries worldwide and the four dengue virus serotypes often co-circulate. Infection with one serotype results in high titers of cross-reactive antibodies produced by plasmablasts, protecting temporarily against all serotypes, but impairing protective immunity in subsequent infections. To understand the development of these plasmablasts, we analyzed virus-specific B cell properties in patients during acute disease and at convalescence.

View Article and Find Full Text PDF

Globally, dengue virus (DENV) is one of the most widespread vector-borne viruses. Dengue disease affects populations in endemic areas and, increasingly, tourists who travel to these countries, but there is currently no approved vaccine for dengue. A phase 3 efficacy trial with Sanofi-Pasteur's recombinant, live-attenuated, tetravalent dengue vaccine (CYD-TDV) conducted in South East Asia showed an overall efficacy of 56% against virologically confirmed dengue infections of any severity and any of the 4 serotypes, but the long-term protection of the vaccine has yet to be demonstrated.

View Article and Find Full Text PDF

Dengue disease is a global challenge for healthcare systems particularly during outbreaks, and millions of dollars are spent every year for vector control. An efficient and safe vaccine that is cost-effective could resolve the burden that dengue virus imposes on affected countries. We describe here the immunogenicity of a tetravalent formulation of a recombinant fusion protein consisting of E domain III and the capsid protein of dengue serotypes 1-4 (Tetra DIIIC).

View Article and Find Full Text PDF
Article Synopsis
  • Dengue virus has four serotypes and is widespread in tropical regions, with no specific treatment or vaccine currently available, leading to challenges in understanding immune protection against the virus.
  • Research indicates that serotype cross-reactive antibodies peak shortly after infection and decrease over about a year, complicating assessments of long-term immunity following dengue infections.
  • A study found that secondary dengue patients produced antibodies specific to the virus's envelope protein more rapidly, suggesting that an E-specific ELISA is more effective for diagnosing secondary infections than traditional methods.
View Article and Find Full Text PDF

Unlabelled: Dengue virus (DENV) infects an estimated 400 million people every year, causing prolonged morbidity and sometimes mortality. Development of an effective vaccine has been hampered by the lack of appropriate small animal models; mice are naturally not susceptible to DENV and only become infected if highly immunocompromised. Mouse models lacking both type I and type II interferon (IFN) receptors (AG129 mice) or the type I IFN receptor (IFNAR(-/-) mice) are susceptible to infection with mouse-adapted DENV strains but are severely impaired in mounting functional immune responses to the virus and thus are of limited use for study.

View Article and Find Full Text PDF

Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission.

View Article and Find Full Text PDF

Dengue virus immune protection is specific to the serotype encountered and is thought to persist throughout one's lifetime. Many serotype cross-reactive memory B cells isolated from humans with previous dengue infection are specific for the nonstructural and the prM structural viral proteins, and they can enhance infection in vitro. However, plasmablasts circulating in enormous numbers during acute secondary infection have not been studied.

View Article and Find Full Text PDF

Human blood monocytes play a central role in dengue infections and form the majority of virus infected cells in the blood. Human blood monocytes are heterogeneous and divided into CD16(-) and CD16(+) subsets. Monocyte subsets play distinct roles during disease, but it is not currently known if monocyte subsets differentially contribute to dengue protection and pathogenesis.

View Article and Find Full Text PDF

Background: Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections.

View Article and Find Full Text PDF

We report that dengue virus (DENV) methyltransferase sequentially methylates the guanine N-7 and ribose 2'-O positions of viral RNA cap (GpppA-->m(7)GpppA-->m(7)GpppAm). The order of two methylations is determined by the preference of 2'-O methylation for substrate m(7)GpppA-RNA to GpppA-RNA, and the 2'-O methylation is not absolutely dependent on the prior N-7 methylation. A mutation that completely abolished the 2'-O methylation attenuated DENV replication in cell culture, whereas another mutation that abolished both methylations was lethal for viral replication, suggesting that N-7 methylation is more important than 2'-O methylation in viral replication.

View Article and Find Full Text PDF