Publications by authors named "Ying Waeckerle-Men"

Article Synopsis
  • Vaccines typically rely on T lymphocytes for B-cell activity and memory, but the study shows that specific peptide and adjuvant combinations can induce antibody responses without T-cell help.
  • Mice immunized with liposomes carrying 15mer peptides and monophosphoryl lipid A (MPLA) exhibited a rapid IgG class switch and long-lasting antibody responses, highlighting a novel mechanism of T-cell independent antibody production.
  • This T-cell independent response could be beneficial in situations where T-cell immunity is impaired or when immediate antibody protection is required, indicating potential for new vaccine strategies.
View Article and Find Full Text PDF

Background: Peanut allergy is a type-I hypersensitivity immune reaction mediated by the binding of peanut allergens to IgE-FcεRI complexes on mast cells and basophils and by their subsequent cellular degranulation. Of all major peanut allergens, Ara h 2 is considered the most anaphylactic. With few options but allergen avoidance, effective treatment of allergic patients is needed.

View Article and Find Full Text PDF

Background: Peanut allergy accounts for the majority of food-induced hypersensitivity reactions and can lead to lethal anaphylaxis. Animal models can provide an insight into the immune mechanisms responsible for sensitization and allergic anaphylaxis. However, different mouse strains and sensitization protocols can influence the successful development of a peanut allergic mouse model.

View Article and Find Full Text PDF

Conventional vaccines are very efficient in the prevention of bacterial infections caused by extracellular pathogens due to effective stimulation of pathogen-specific antibodies. In contrast, considering that intracellular surveillance by antibodies is not possible, they are typically less effective in preventing or treating infections caused by intracellular pathogens such as . The objective of the current study was to use so-called photochemical internalization (PCI) to deliver a live bacterial vaccine to the cytosol of antigen-presenting cells (APCs) for the purpose of stimulating major histocompatibility complex (MHC) I-restricted CD8 T-cell responses.

View Article and Find Full Text PDF

Nanoparticle-based delivery systems have shown great promise for theranostics and bioimaging on the laboratory scale due to favorable pharmacokinetics and biodistribution. In this study, we examine the utility of a cage-forming variant of the protein lumazine synthase, which was previously designed and evolved to encapsulate biomacromolecular cargo. Linking antibody-binding domains to the exterior of the cage enabled binding of targeting immunoglobulins and cell-specific uptake of encapsulated cargo.

View Article and Find Full Text PDF

Antigen cross-presentation to cytotoxic CD8 T cells is crucial for the induction of anti-tumor and anti-viral immune responses. Recently, co-encapsulation of photosensitizers and antigens into microspheres and subsequent photochemical internalization (PCI) of antigens in antigen presenting cells has emerged as a promising new strategy for inducing antigen-specific CD8 T cell responses in vitro and in vivo. However, the exact cellular mechanisms have hardly been investigated in vivo, i.

View Article and Find Full Text PDF

Cytotoxic T lymphocytes (CTLs) are key players in fighting cancer, and their induction is a major focus in the design of therapeutic vaccines. Yet, therapeutic vaccine efficacy is limited, in part due to the suboptimal vaccine processing by antigen-presenting cells (APCs). Such processing typically takes place via the MHC class II pathway for CD4 T-cell activation and MHC class I pathway for activation of CD8 CTLs.

View Article and Find Full Text PDF

The generation of CTLs is crucial in the immunological fight against cancer and many infectious diseases. To achieve this, vaccine Ags need to be targeted to the cytosol of dendritic cells, which can activate CD8 T cells via MHC class I (MHCI). Therefore, such targeting has become one of the major objectives of vaccine research.

View Article and Find Full Text PDF

Cancer vaccines aim to induce CD8 T cells infiltrating the tumour. For protein-based vaccines, the main biological barrier to overcome is the default MHC class-II-pathway, with activation of CD4 T cells rather than CD8 T cells. The latter requires antigens to access the cytosol and MHC class I antigen presentation.

View Article and Find Full Text PDF

The protection or treatment of several immunological disorders is dependent on the antigen-specific and cytotoxic CD8 T cells. However, vaccines aimed at stimulating CD8 T-cell responses are typically ineffective because vaccine antigens are primarily processed by the MHC class-II and not the MHC class-I pathway of antigen presentation: the latter requires cytosolic delivery of antigen. In order to facilitate targeting of antigen to cytosol, the antigen was combined with the photosensitiser TPCS2a (disulfonated tetraphenyl chlorin) and administered intradermally to mice.

View Article and Find Full Text PDF

Tumour chemotherapy with drugs is typically associated with severe systemic and local side effects for which reason immunotherapy represents a safer alternative. However, vaccination often fails to generate the required cytotoxic CD8 T-cell responses due to insufficient access of antigens to the cytosol and the MHC class I pathway of antigen presentation. One important issue of tumour research is therefore to develop strategies that allow cytosolic targeting or endosomal escape of tumour antigens.

View Article and Find Full Text PDF

Mycosis fungoides and its leukaemic counterpart Sézary syndrome are the most frequent cutaneous T-cell lymphomas (CTCL), and there is no cure for these diseases. We evaluated the effect of clinically approved antihistamines on the growth of CTCL cell lines. CTCL cell lines as well as blood lymphocytes from patients with Sézary syndrome were cultured with antihistamines, and the cell were analysed for proliferation, apoptosis and expression of programmed death molecules and transcription factors.

View Article and Find Full Text PDF

Vaccination with Mycobacterium bovis BCG provides limited protection against pulmonary tuberculosis and a risk of dissemination in immune-compromised vaccinees. For the development of new TB vaccines that stimulate strong T-cell responses a variety of strategies is being followed, especially recombinant BCG and attenuated M. tuberculosis.

View Article and Find Full Text PDF

Immunoglobulin class switching from IgM to IgG in response to peptides is generally T cell-dependent and vaccination in T cell-deficient individuals is inefficient. We show that a vaccine consisting of a dense array of peptides on liposomes induced peptide-specific IgG responses totally independent of T-cell help. Independency was confirmed in mice lacking T cells and in mice deficient for MHC class II, CD40L, and CD28.

View Article and Find Full Text PDF

Background: Antihistamines are considered safe and used worldwide against allergy, pruritus, nausea, and cough and as sleeping aids. Nonetheless, a growing number of reports suggest that antihistamines also have immunoregulatory functions.

Objective: We examined the extent and by what potential mechanisms histamine-1-receptor (H1R) antagonists exert immune suppressive effects.

View Article and Find Full Text PDF

Pathogenic mycobacteria escape host innate immune responses by blocking phagosome-lysosome fusion. Avoiding lysosomal delivery may also be involved in the capacity of mycobacteria to evade major histocompatibility complex (MHC) class I- or II-dependent T-cell responses. In this study, we used a genetic mutant of Mycobacterium bovis BCG that is unable to escape lysosomal transfer and show that presentation of mycobacterial antigens is affected by the site of intracellular residence.

View Article and Find Full Text PDF

Renal proximal tubular epithelial cells, a target of infiltrating T cells during renal allograft rejection, may be protected from this injury by the cell surface protein CD274 (also termed PD-L1 for programmed death ligand 1). The co-inhibitory molecules PD-L1 (CD274) and PD-L2 (CD273) are ligands of PD-1 (programmed death 1; CD279). Here we determine the functional role of PD-1/PD-L pathways in human renal allograft rejection.

View Article and Find Full Text PDF

Background/aims: MHC molecules are upregulated on renal proximal tubular epithelial cells (TEC) under inflammatory conditions. This allows TEC to act as 'non-professional' antigen-presenting cells (APC). The aim of this study was to compare the costimulatory molecule expression pattern and the T cell activation capacity between renal TEC and professional APC, e.

View Article and Find Full Text PDF

Background/aim: TGF-beta expression is increased in immune-mediated and fibrotic renal diseases and modulates the tubulointerstitial T-cell response. We examined whether TGF-beta changes the expression of PD-L1 and CD40 in the renal proximal tubular epithelial cell (TEC), and whether the activation of CD8(+) cytotoxic T cells (CTLs) is influenced by TGF-beta treatment of TECs.

Methods: Murine TECs were treated with TGF-beta or IFN-gamma.

View Article and Find Full Text PDF

Aim: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by an imbalance between tubular epithelial cell proliferation and apoptosis. We have previously shown that the mammalian target of rapamycin (mTOR) signalling pathway is aberrantly activated in the cystic kidneys of Han:SPRD rats with ADPKD. Because the Akt kinase is an upstream regulator of mTOR, we hypothesized that the activity of Akt could be enhanced in the kidneys of Han:SPRD rats.

View Article and Find Full Text PDF

Background: Activated infiltrating T cells play a crucial role in nephritic inflammation via the direct interaction with proximal tubular epithelial cells (TEC). Under inflammatory conditions, major histocompatibility complex class I and II molecules are upregulated on the surface of renal TEC, enabling them to function as "non-professional" antigen-presenting cells (APC) to activate T cells, and, in turn to be targeted by cytotoxic T lymphocytes (CTL) to cause tissue damage. It is known that co-stimulatory (e.

View Article and Find Full Text PDF

Biodegradable microparticles (MP) represent a promising and efficient delivery system for parenteral vaccination. Recently, MP have also been explored as tool for the ex vivo antigen loading of professional antigen-presenting cells such as dendritic cells (DC) to be used as cellular vaccines. The purpose of this study was to investigate various polycationic coatings on poly(lactide-co-glycolide) (PLGA) MP, with regard to their effect on phenotypic and functional maturation of monocyte-derived DC (MoDC) that had previously been loaded with the MP in vitro.

View Article and Find Full Text PDF

Background: Dendritic cell (DC)-based immunotherapy is a promising approach to augment tumor antigen-specific T cell responses in cancer patients. However, tumor escape with down-regulation or complete loss of target antigens may limit the susceptibility of tumor cells to the immune attack. Concomitant generation of T cell responses against several immunodominant antigens may circumvent this potential drawback.

View Article and Find Full Text PDF

Dendritic cell (DC)-based immunotherapy has been hampered by the lack of suitable methods for antigen delivery. Here, we use biodegradable poly(D,L-lactide-co-glycolide) microspheres (PLGA-MS) as carriers of peptides and proteins for antigen delivery to human monocyte-derived DC (MoDC). Compared to soluble proteins, MHC classes I and II-restricted presentation of PLGA-MS-encapsulated proteins and peptides by MoDC was markedly prolonged and proteins were presented 50-fold more efficiently on class I molecules.

View Article and Find Full Text PDF