Cocaine blocks dopamine reuptake, thereby producing rewarding effects that are widely studied. However, cocaine also blocks serotonin uptake, which we show drives, in rats, individually variable aversive effects that depend on serotonin 2C receptors (5-HT2CRs) in the rostromedial tegmental nucleus (RMTg), a major GABAergic afferent to midbrain dopamine neurons. 5-HT2CRs produce depolarizing effects in RMTg neurons that are particularly strong in some rats, leading to aversive effects that reduce acquisition of and relapse to cocaine seeking.
View Article and Find Full Text PDFAlthough cocaine is powerfully rewarding, not all individuals are equally prone to abusing this drug. We postulate that these differences arise in part because some individuals exhibit stronger aversive responses to cocaine that protect them from cocaine seeking. Indeed, using conditioned place preference (CPP) and a runway operant cocaine self-administration task, we demonstrate that avoidance responses to cocaine vary greatly between individual high cocaine-avoider and low cocaine-avoider rats.
View Article and Find Full Text PDFThe aversive properties associated with drugs of abuse influence both the development of addiction and relapse. Cocaine produces strong aversive effects after rewarding effects wear off, accompanied by increased firing in the lateral habenula (LHb) that contributes to downstream activation of the rostromedial tegmental nucleus (RMTg). However, the sources of this LHb activation are unknown, as the LHb receives many excitatory inputs whose contributions to cocaine aversion remain uncharacterized.
View Article and Find Full Text PDFPersistence of reward seeking despite punishment or other negative consequences is a defining feature of mania and addiction, and numerous brain regions have been implicated in such punishment learning, but in disparate ways that are difficult to reconcile. We now show that the ability of an aversive punisher to inhibit reward seeking depends on coordinated activity of three distinct afferents to the rostromedial tegmental nucleus (RMTg) arising from cortex, brainstem, and habenula that drive triply dissociable RMTg responses to aversive cues, outcomes, and prediction errors, respectively. These three pathways drive correspondingly dissociable aspects of punishment learning.
View Article and Find Full Text PDFThe rostromedial tegmental nucleus (RMTg), also known as the tail of the ventral tegmental area (tVTA), is a GABAergic structure identified in 2009 that receives strong inputs from the lateral habenula and other sources, sends dense inhibitory projections to midbrain dopamine (DA) neurons, and plays increasingly recognized roles in aversive learning, addiction, and other motivated behaviors. In general, little is known about the genetic identity of these neurons. However, recent work has identified the transcription factor FoxP1 as enhanced in the mouse RMTg (Lahti et al.
View Article and Find Full Text PDFRecent advances in the ability to efficiently characterize tumor genomes is enabling targeted drug development, which requires rigorous biomarker-based patient selection to increase effectiveness. Consequently, representative DNA biomarkers become equally important in pre-clinical studies. However, it is still unclear how well these markers are maintained between the primary tumor and the patient-derived tumor models.
View Article and Find Full Text PDFGenomic alterations of the epidermal growth factor receptor (EGFR) gene play a crucial role in pathogenesis of glioblastoma multiforme (GBM). By systematic analysis of GBM genomic data, we have identified and characterized a novel exon 27 deletion mutation occurring within the EGFR carboxyl-terminus domain (CTD), in addition to identifying additional examples of previously reported deletion mutations in this region. We show that the GBM-derived EGFR CTD deletion mutants are able to induce cellular transformation in vitro and in vivo in the absence of ligand and receptor autophosphorylation.
View Article and Find Full Text PDF