Red tides that occur off coasts have become a worldwide phenomenon over the past decades. In order to mitigate the damage of the red tides on the aquatic ecosystems, it is crucial to develop a method for predicting algicidal activities that requires less labor and time, and most importantly, this method can quickly screen potential algicides to control red tides. In this study, we have investigated the algicidal activity of 19 natural flavonoids against a typical red tide alga, Phaeocystis globosa.
View Article and Find Full Text PDFOxidation and reduction kinetics of iron (Fe) and proportion of steady-state Fe(II) concentration relative to total dissolved Fe (steady-state Fe(II) fraction) were investigated in the presence of various types of standard humic substances (HS) with particular emphasis on the photochemical and thermal reduction of Fe(III) and oxidation of Fe(II) by dissolved oxygen (O2) and hydrogen peroxide (H2O2) at circumneutral pH (pH 7-8). Rates of Fe(III) reduction were spectrophotometrically determined by a ferrozine method under the simulated sunlight and dark conditions, whereas rates of Fe(II) oxidation were examined in air-saturated solution using luminol chemiluminescence technique. The reduction and oxidation rate constants were determined to substantially vary depending on the type of HS.
View Article and Find Full Text PDFFerrous iron (Fe[II]) oxidation by dissolved oxygen was investigated in the Shizugawa Bay watershed with particular attention given to the effect of dissolved organic matter (DOM) properties on Fe(II) oxidation. To cover a wide spectrum of DOM composition, water samples were collected from various water sources including freshwater (e.g.
View Article and Find Full Text PDFFe(II) oxidation was investigated in samples from the Sagami River basin (Japan) with particular emphasis on the effect of dissolved organic matter (DOM) in an urban river system. Collected samples consisted of main stream and tributary waters impacted to a moderate and minor extent by anthropogenic activities, respectively, and treated effluents from adjacent municipal wastewater treatment plants (MWWTPs: as representative anthropogenic point source). Nanomolar Fe(II) oxidation was measured in air-saturated waters using luminol chemiluminescence in the dark at 25 °C.
View Article and Find Full Text PDF