Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex difference, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among 2,641 male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infections occurred in 1,033 males and 137 females.
View Article and Find Full Text PDFA prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users' intents from instructions and feedback and as an expressive speaker to explain its decision processes to users.
View Article and Find Full Text PDFThe problem of continuous inverse optimal control (over finite time horizon) is to learn the unknown cost function over the sequence of continuous control variables from expert demonstrations. In this article, we study this fundamental problem in the framework of energy-based model (EBM), where the observed expert trajectories are assumed to be random samples from a probability density function defined as the exponential of the negative cost function up to a normalizing constant. The parameters of the cost function are learned by maximum likelihood via an "analysis by synthesis" scheme, which iterates: 1) synthesis step: sample the synthesized trajectories from the current probability density using the Langevin dynamics via backpropagation through time and 2) analysis step: update the model parameters based on the statistical difference between the synthesized trajectories and the observed trajectories.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2022
This paper studies the problem of learning the conditional distribution of a high-dimensional output given an input, where the output and input may belong to two different domains, e.g., the output is a photo image and the input is a sketch image.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
May 2022
3D data that contains rich geometry information of objects and scenes is valuable for understanding 3D physical world. With the recent emergence of large-scale 3D datasets, it becomes increasingly crucial to have a powerful 3D generative model for 3D shape synthesis and analysis. This paper proposes a deep 3D energy-based model to represent volumetric shapes.
View Article and Find Full Text PDFThe ability to provide comprehensive explanations of chosen actions is a hallmark of intelligence. Lack of this ability impedes the general acceptance of AI and robot systems in critical tasks. This paper examines what forms of explanations best foster human trust in machines and proposes a framework in which explanations are generated from both functional and mechanistic perspectives.
View Article and Find Full Text PDFRNA sequencing (RNA-seq) is a powerful technology for studying human transcriptome variation. We introduce PAIRADISE (Paired Replicate Analysis of Allelic Differential Splicing Events), a method for detecting allele-specific alternative splicing (ASAS) from RNA-seq data. Unlike conventional approaches that detect ASAS events one sample at a time, PAIRADISE aggregates ASAS signals across multiple individuals in a population.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
March 2022
We present a deformable generator model to disentangle the appearance and geometric information for both image and video data in a purely unsupervised manner. The appearance generator network models the information related to appearance, including color, illumination, identity or category, while the geometric generator performs geometric warping, such as rotation and stretching, through generating deformation field which is used to warp the generated appearance to obtain the final image or video sequences. Two generators take independent latent vectors as input to disentangle the appearance and geometric information from image or video sequences.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2021
In this paper, we present a method to mine object-part patterns from conv-layers of a pre-trained convolutional neural network (CNN). The mined object-part patterns are organized by an And-Or graph (AOG). This interpretable AOG representation consists of a four-layer semantic hierarchy, i.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2021
This paper introduces an explanatory graph representation to reveal object parts encoded inside convolutional layers of a CNN. Given a pre-trained CNN, each filter in a conv-layer usually represents a mixture of object parts. We develop a simple yet effective method to learn an explanatory graph, which automatically disentangles object parts from each filter without any part annotations.
View Article and Find Full Text PDFThis paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs.
View Article and Find Full Text PDFMethamphetamine (MA) triggers neuroinflammation and medications that counteract MA-induced neuroinflammation may reduce MA-induced neurodegeneration and improve neurocognition and treatment outcomes in MA use disorder. We performed a randomized, placebo-controlled trial to determine the safety and efficacy of ibudilast (IBUD), a phosphodiesterase inhibitor that reduces neuroinflammation, for the treatment of MA use disorder. Treatment-seeking volunteers with MA use disorder were randomly assigned to receive 12 weeks of IBUD 50 mg twice daily (N = 64) or placebo (N = 61) with medication management counseling.
View Article and Find Full Text PDFA recent paper (Chang & Tsao, 2017) reports an interesting discovery. For the face stimuli generated by a pretrained active appearance model (AAM), the responses of neurons in the areas of the primate brain that are responsible for face recognition exhibit a strong linear relationship with the shape variables and appearance variables of the AAM that generates the face stimuli. In this letter, we show that this behavior can be replicated by a deep generative model, the generator network, that assumes that the observed signals are generated by latent random variables via a top-down convolutional neural network.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
February 2021
Video sequences contain rich dynamic patterns, such as dynamic texture patterns that exhibit stationarity in the temporal domain, and action patterns that are non-stationary in either spatial or temporal domain. We show that an energy-based spatial-temporal generative ConvNet can be used to model and synthesize dynamic patterns. The model defines a probability distribution on the video sequence, and the log probability is defined by a spatial-temporal ConvNet that consists of multiple layers of spatial-temporal filters to capture spatial-temporal patterns of different scales.
View Article and Find Full Text PDFBy middle childhood, humans are able to learn abstract semantic relations (e.g., antonym, synonym, category membership) and use them to reason by analogy.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2020
This paper studies the cooperative training of two generative models for image modeling and synthesis. Both models are parametrized by convolutional neural networks (ConvNets). The first model is a deep energy-based model, whose energy function is defined by a bottom-up ConvNet, which maps the observed image to the energy.
View Article and Find Full Text PDFBackground: A-to-I RNA editing is an important step in RNA processing in which specific adenosines in some RNA molecules are post-transcriptionally modified to inosines. RNA editing has emerged as a widespread mechanism for generating transcriptome diversity. However, there remain significant knowledge gaps about the variation and function of RNA editing.
View Article and Find Full Text PDFBackground: Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks.
View Article and Find Full Text PDFThe rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data.
View Article and Find Full Text PDFBackground: Methamphetamine dependence is a significant public health concern without any approved medications for treatment. We evaluated ibudilast, a nonselective phosphodiesterase inhibitor, to assess the safety and tolerability during intravenous methamphetamine administration. We conducted a randomized, double-blind, placebo-controlled, within-subjects crossover clinical trial.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2014
Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNA-Seq data.
View Article and Find Full Text PDFIn the multimodal neuroimaging framework, data on a single subject are collected from inherently different sources such as functional MRI, structural MRI, behavioral and/or phenotypic information. The information each source provides is not independent; a subset of features from each modality maps to one or more common latent dimensions, which can be interpreted using generative models. These latent dimensions, or "topics," provide a sparse summary of the generative process behind the features for each individual.
View Article and Find Full Text PDFChIP-chip (or ChIP-on-chip) is a technology for isolation and identification of genomic sites occupied by specific DNA-binding proteins in living cells. The ChIP-chip signals can be obtained over the whole genome by tiling arrays, where a peak shape is generally observed around a protein-binding site. In this article, we describe the ChIP-chip process and present a probability model for ChIP-chip data.
View Article and Find Full Text PDFReconstructing full-length transcript isoforms from sequence fragments (such as ESTs) is a major interest and challenge for bioinformatic analysis of pre-mRNA alternative splicing. This problem has been formulated as finding traversals across the splice graph, which is a directed acyclic graph (DAG) representation of gene structure and alternative splicing. In this manuscript we introduce a probabilistic formulation of the isoform reconstruction problem, and provide an expectation-maximization (EM) algorithm for its maximum likelihood solution.
View Article and Find Full Text PDF