Background: Heart failure with preserved ejection fraction (HFpEF) accounts for ~50% of HF cases, with no effective treatments. The ZSF1-obese rat model recapitulates numerous clinical features of HFpEF including hypertension, obesity, metabolic syndrome, exercise intolerance, and LV diastolic dysfunction. Here, we utilized a systems-biology approach to define the early metabolic and transcriptional signatures to gain mechanistic insight into the pathways contributing to HFpEF development.
View Article and Find Full Text PDFProstate cancer (PCa) is the most common cancer diagnosed in men worldwide and was the second leading cause of cancer-related deaths in US males in 2022. Prostate cancer also represents the second highest cancer mortality disparity between non-Hispanic blacks and whites. However, there is a relatively small number of prostate normal and cancer cell lines compared to other cancers.
View Article and Find Full Text PDFHypothyroidism is commonly detected in patients with medulloblastoma (MB). However, whether thyroid hormone (TH) contributes to MB pathogenicity remains undetermined. Here, we find that TH plays a critical role in promoting tumor cell differentiation.
View Article and Find Full Text PDFUnlabelled: Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells.
View Article and Find Full Text PDFProstate cancer (PCa) is the most common cancer diagnosed in men worldwide and the second leading cause of cancer-related deaths in US males in 2022. Prostate cancer also represents the second highest cancer mortality disparity between non-Hispanic blacks and whites. However, there is a relatively small number of prostate normal and cancer cell lines compared to other cancers.
View Article and Find Full Text PDFBackground & Aims: Autophagy plays roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelial homeostasis.
Methods: We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histologic and biochemical analyses.
Hypothyroidism is commonly detected in patients with medulloblastoma (MB). A possible link between thyroid hormone (TH) signaling and MB pathogenicity has not been reported. Here, we find that TH plays a critical role in promoting tumor cell differentiation.
View Article and Find Full Text PDFBackground & Aims: Autophagy has been demonstrated to play roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelium under homeostatic conditions.
Methods: We generated tamoxifen-inducible, squamous epithelial-specific (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histological and biochemical analyses.
Induced pluripotent stem cells (iPSCs) have enormous potential in producing human tissues endlessly. We previously reported that type V collagen (COL5), a pancreatic extracellular matrix protein, promotes islet development and maturation from iPSCs. In this study, we identified a bioactive peptide domain of COL5, WWASKS, through bioinformatic analysis of decellularized pancreatic ECM (dpECM)-derived collagens.
View Article and Find Full Text PDFIntroduction: Under homeostatic conditions, esophageal epithelium displays a proliferation/differentiation gradient that is generated as proliferative basal cells give rise to suprabasal cells then terminally differentiated superficial cells. This proliferation/differentiation gradient is often perturbed in esophageal pathologies. Basal cell hyperplasia may occur in patients with gastroesophageal reflux disease (GERD), a condition in which acid from the stomach enters the esophagus, or eosinophilic esophagitis (EoE), an emerging form of food allergy.
View Article and Find Full Text PDFThe significance of alveolar epithelial type 2 (AT2) cell proliferation for lung alveolar epithelial homeostasis and regeneration after injury has been widely accepted. However, the heterogeneity of AT2 cell population for cell proliferation capacity remains disputed. By single-cell RNA sequencing and genetic lineage labeling using the Ki67 knock-in mouse model, we map all proliferative AT2 cells in homeostatic and regenerating murine lungs after injury induced by infection.
View Article and Find Full Text PDFAlthough morphologic progression coupled with expression of specific molecular markers has been characterized along the esophageal squamous differentiation gradient, the molecular heterogeneity within cell types along this trajectory has yet to be classified at the single cell level. To address this knowledge gap, we perform single cell RNA-sequencing of 44,679 murine esophageal epithelial, to identify 11 distinct cell populations as well as pathways alterations along the basal-superficial axis and in each individual population. We evaluate the impact of aging upon esophageal epithelial cell populations and demonstrate age-associated mitochondrial dysfunction.
View Article and Find Full Text PDFUnlabelled: Because loss of the NF2 tumor suppressor gene results in p21-activated kinase (Pak) activation, PAK inhibitors hold promise for the treatment of NF2-deficient tumors. To test this possibility, we asked if loss of Pak2, a highly expressed group I PAK member, affects the development of malignant mesothelioma in Nf2;Cdkn2a-deficient (NC) mice and the growth properties of NC mesothelioma cells in culture. In vivo, deletion of Pak2 resulted in a markedly decreased incidence and delayed onset of both pleural and peritoneal malignant mesotheliomas in NC mice.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) persists in human B-cells by maintaining its chromatinized episomes within the nucleus. We have previously shown that cellular factor Poly [ADP-ribose] polymerase 1 (PARP1) binds the EBV genome, stabilizes CTCF binding at specific loci, and that PARP1 enzymatic activity correlates with maintaining a transcriptionally active latency program. To better understand PARP1's role in regulating EBV latency, here we functionally characterize the effect of PARP enzymatic inhibition on episomal structure through in situ HiC mapping, generating a complete 3D structure of the EBV genome.
View Article and Find Full Text PDFAcute damage to the heart, as in the case of myocardial infarction (MI), triggers a robust inflammatory response to the sterile injury that is part of a complex and highly organized wound-healing process. Cortical bone stem cell (CBSC) therapy after MI has been shown to reduce adverse structural and functional remodeling of the heart after MI in both mouse and swine models. The basis for these CBSC treatment effects on wound healing are unknown.
View Article and Find Full Text PDFThe transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4 intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (Sil). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the Sil to maintain its own long-term expression in CD4 T cells.
View Article and Find Full Text PDFHomeobox genes control body patterning and cell-fate decisions during development. The homeobox genes consist of many families, only some of which have been investigated regarding a possible role in tumorigenesis. Dysregulation of family genes have been widely implicated in cancer etiology.
View Article and Find Full Text PDFMetabolic reprogramming is a common feature of many human cancers, including acute myeloid leukemia (AML). However, the upstream regulators that promote AML metabolic reprogramming and the benefits conferred to leukemia cells by these metabolic changes remain largely unknown. We report that the transcription factor ATF3 coordinates serine and nucleotide metabolism to maintain cell cycling, survival, and the differentiation blockade in AML.
View Article and Find Full Text PDFFerroptosis is associated with lipid hydroperoxides generated by the oxidation of polyunsaturated acyl chains. Lipid hydroperoxides are reduced by glutathione peroxidase 4 (GPX4) and GPX4 inhibitors induce ferroptosis. However, the therapeutic potential of triggering ferroptosis in cancer cells with polyunsaturated fatty acids is unknown.
View Article and Find Full Text PDFPurpose: Receptor-interacting protein kinase 3 (RIPK3) phosphorylates effector molecule MLKL to trigger necroptosis. Although RIPK3 loss is seen in several human cancers, its role in malignant mesothelioma is unknown. This study aimed to determine whether RIPK3 functions as a potential tumor suppressor to limit development of malignant mesothelioma.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multiplex data from patient tissue, three-dimensional coculturing assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis.
View Article and Find Full Text PDFThe Dlx5 homeobox gene was first implicated as an oncogene in a T-ALL mouse model expressing myristoylated (Myr) Akt2. Furthermore, overexpression of Dlx5 was sufficient to drive T-ALL in mice by directly activating Akt and Notch signaling. These findings implied that Akt2 cooperates with Dlx5 in T-cell lymphomagenesis.
View Article and Find Full Text PDFOncogenic transformation alters lipid metabolism to sustain tumor growth. We define a mechanism by which cholesterol metabolism controls the development and differentiation of pancreatic ductal adenocarcinoma (PDAC). Disruption of distal cholesterol biosynthesis by conditional inactivation of the rate-limiting enzyme Nsdhl or treatment with cholesterol-lowering statins switches glandular pancreatic carcinomas to a basal (mesenchymal) phenotype in mouse models driven by Kras expression and homozygous Trp53 loss.
View Article and Find Full Text PDFBackground: Immortalization of primary prostate epithelial cells (PrEC) with just hTERT expression is particularly inefficient in the absence of DNA tumor viral proteins or p16 knockdown.
Materials And Methods: Here, we describe the establishment of immortalized normal prostate epithelial cell line models using CRISPR technology to inactivate the CDKN2A locus concomitantly with ectopic expression of an hTERT transgene.
Results: Using this approach, we have obtained immortal cell clones that exhibit fundamental characteristics of normal cells, including diploid genomes, near normal karyotypes, normal p53 and pRB cell responses, the ability to form non-invasive spheroids, and a non-transformed phenotype.