Publications by authors named "Yindi Zeng"

Multiple myeloma is a hematological cancer that can be treated but remains incurable. With the advancement of science and technology, more drugs have been developed for myeloma chemotherapy that greatly improve the quality of life of patients. However, relapse remains a serious problem puzzling patients and doctors.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a prevalent plasma cell malignancy in the blood system that remains incurable. Given the abnormally high expression of c-Maf in most MM patients, targeting c-Maf presents an attractive therapeutic approach for treating MM malignancies. In this study, we employed a combined strategy involving molecular docking-based virtual screening, molecular dynamics (MD) simulation, and molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculation on existing FDA-approved drugs.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a B-cell malignancy characterized by the excessive proliferation of bone marrow plasma cells and the production of abnormal immunoglobulins. Despite advances in therapeutic strategies, it remains an incurable disease. Recently, innovative anticancer drugs have been developed and approved, leading to improvements in MM therapy; however, drug resistance continues to be a major obstacle that results in treatment failure.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an accumulated disease of malignant plasma cells, which is still incurably owing to therapeutic resistance and disease relapse. Herein, we synthesized a novel 2-iminobenzimidazole compound, XYA1353, showing a potent anti-myeloma activity both in vitro and in vivo. Compound XYA1353 dose-dependently promoted MM cell apoptosis via activating caspase-dependent endogenous pathways.

View Article and Find Full Text PDF

Hepatocellular carcinoma is one kind of clinical common malignant tumor with a poor prognosis, and its pathogenesis remains to be clarified urgently. This study was performed to elucidate key genes involving HCC by bioinformatics analysis and experimental evaluation. We identified common differentially expressed genes (DEGs) based on gene expression profile data of GSE60502 and GSE84402 from the Gene Expression Omnibus (GEO) database.

View Article and Find Full Text PDF

Background: Rice (Oryza sativa L.) is a staple food crop worldwide. Its yield and quality are affected by its tillering pattern and spikelet development.

View Article and Find Full Text PDF