Publications by authors named "Yindi Chu"

To enable an efficient bacterial cell surface display with effective protein expression and cell surface loading ability via autotransporter for potential vaccine development applications, the inner membrane protein translocation efficiency was investigated via a trial-and-error strategy by replacing the original unusual long signal peptide of E. coli Ag43 with 11 different signal peptides. The receptor-binding domain (RBD) of coronavirus was used as a neutral display substrate to optimize the expression conditions, and the results showed that signal peptides from PelB, OmpC, OmpF, and PhoA protein enhance the bacterial cell surface display efficiency of RBD.

View Article and Find Full Text PDF

The biogenesis of outer membrane proteins is mediated by the β-barrel assembly machinery (BAM), which is a heteropentomeric complex composed of five proteins named BamA-E in Escherichia coli. Despite great progress in the BAM structural analysis, the molecular details of BAM-mediated processes as well as the exact function of each BAM component during OMP assembly are still not fully understood. To enable a distinguishment of the function of each BAM component, it is the aim of the present work to examine and identify the effective minimum form of the E.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) crisis urges the development of new antibiotics. In the present work, we for the first time used bio-affinity ultrafiltration combined with HPLC-MS (UF-HPLC-MS) to examine the interaction between the outer membrane β-barrel proteins and natural products. Our results showed that natural product licochalcone A from licorice interacts with BamA and BamD with the enrichment factor of 6.

View Article and Find Full Text PDF

An effective response that combines prevention and treatment is still the most anticipated solution to the increasing incidence of antimicrobial resistance (AMR). As the phenomenon continues to evolve, AMR is driving an escalation of hard-to-treat infections and mortality rates. Over the years, bacteria have devised a variety of survival tactics to outwit the antibiotic's effects, yet given their great adaptability, unexpected mechanisms are still to be discovered.

View Article and Find Full Text PDF

Cren7 and Sis7d, two chromatin proteins from , undergo extensive methylations at multiple lysine residues to various extents. Whether this highly conserved protein serves an epigenetic role in the regulation of the structure and function of the chromosome remains unclear. In the present study, we show that methylation significantly affects Cren7, but not Sis7d, in the ability to bind DNA and to constrain negative DNA supercoils.

View Article and Find Full Text PDF

Antibiotic resistance is currently a world health crisis that urges the development of new antibacterial substances. To this end, natural products, including flavonoids, alkaloids, terpenoids, steroids, peptides and organic acids play a vital role in the development of medicines and thus constitute a rich source in clinical practices, providing an important source of drugs directly or for the screen of lead compounds for new antibiotic development. Because membrane proteins, which comprise more than 60% of the current clinical drug targets, play crucial roles in signal transduction, transport, bacterial pathogenicity and drug resistance, as well as immunogenicity, it is our aim to summarize those natural products with different structures that target bacterial membrane proteins, such as efflux pumps and enzymes, to provide an overview for the development of new antibiotics to deal with antibiotic resistance.

View Article and Find Full Text PDF

Introduction: Syringa pubescens Turcz. was reported to be abundant in the Funiu Mountains of Henan Province and can be used to treat hepatitis and cirrhosis. In order to develop and utilise the resource, a fast and simple technique to extract bioactive compounds is needed.

View Article and Find Full Text PDF

The biogenesis of outer membrane proteins requires the function of β-barrel assembly machinery (BAM), whose function is highly conserved while its composition is variable. The Escherichia coli BAM is composed of five subunits, while Thermus thermophilus seems to contain a single BAM protein, named TtOmp85. To search for the primitive form of a functional BAM, we investigated and compared the function of TtOmp85 and E.

View Article and Find Full Text PDF

Background: Regarding plant cell wall polysaccharides degradation, multimodular glycoside hydrolases (GHs) with two catalytic domains separated by one or multiple carbohydrate-binding domains are rare in nature. This special mode of domain organization endows the CelA (GH9-CBM3c-CBM3b-CBM3b-GH48) remarkably high efficiency in hydrolyzing cellulose. Xyn10C/Cel48B from the same bacterium is also such an enzyme which has, however, evolved to target both xylan and cellulose.

View Article and Find Full Text PDF

Bifunctional glycoside hydrolases have potential for cost-savings in enzymatic decomposition of plant cell wall polysaccharides for biofuels and bio-based chemicals. The N-terminal GH10 domain of a bifunctional multimodular enzyme Xyn10C/Cel48B from is an enzyme able to degrade xylan and cellulose simultaneously. However, the molecular mechanism underlying its substrate promiscuity has not been elucidated.

View Article and Find Full Text PDF

Protein methylation is believed to occur extensively in creanarchaea. Recently, aKMT, a highly conserved crenarchaeal protein lysine methyltransferase, was identified and shown to exhibit broad substrate specificity in vitro Here, we have constructed an aKMT deletion mutant of the hyperthermophilic crenarchaeon Sulfolobus islandicus The mutant was viable but showed a moderately slower growth rate than the parental strain under non-optimal growth conditions. Consistent with the moderate effect of the lack of aKMT on the growth of the cell, expression of a small number of genes, which encode putative functions in substrate transportation, energy metabolism, transcriptional regulation, stress response proteins, etc, was differentially regulated by more than twofold in the mutant strain, as compared with that in the parental strain.

View Article and Find Full Text PDF

Protein lysine methylation occurs extensively in the Crenarchaeota, a major kingdom in the Archaea. However, the enzymes responsible for this type of posttranslational modification have not been found. Here we report the identification and characterization of the first crenarchaeal protein lysine methyltransferase, designated aKMT, from the hyperthermophilic crenarchaeon Sulfolobus islandicus.

View Article and Find Full Text PDF

Topoisomerase III (topo III), a type IA topoisomerase, is widespread in hyperthermophilic archaea. In order to interrogate the in vivo role of archaeal topo III, we constructed and characterized a topo III gene deletion mutant of Sulfolobus islandicus. The mutant was viable but grew more slowly than the wild-type strain, especially in a nutrient-poor medium.

View Article and Find Full Text PDF

The Sac10b protein family, also known as Alba, is widely distributed in Archaea. Sac10b homologs in thermophilic Sulfolobus species are very abundant. They bind both DNA and RNA with high affinity and without sequence specificity, and their physiological functions are still not fully understood.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Yindi Chu"

  • - Yindi Chu's recent research focuses on the cell surface display of proteins in bacteria, particularly using the Ag43 autotransporter to enhance the expression of the receptor-binding domain (RBD) of coronaviruses for potential vaccine development. The study identified effective signal peptides that significantly improve display efficiency.
  • - In addition to protein display studies, Chu's work includes investigating the β-barrel assembly machinery (BAM) in Escherichia coli, revealing insights into the minimal functional form required for the assembly of outer membrane proteins, advancing the understanding of protein biogenesis.
  • - Chu has also explored natural products as a means to combat antimicrobial resistance, demonstrating that compounds like licochalcone A can inhibit BAM functions, and has provided an overview of how targeting bacterial membrane proteins with these natural products can lead to new antibiotic development.