Br J Math Stat Psychol
February 2024
In this paper, we propose a novel Gibbs-INLA algorithm for the Bayesian inference of graded response models with ordinal response based on multidimensional item response theory. With the combination of the Gibbs sampling and the integrated nested Laplace approximation (INLA), the new framework avoids the cumbersome tuning which is inevitable in classical Markov chain Monte Carlo (MCMC) algorithm, and has low computing memory, high computational efficiency with much fewer iterations, and still achieve higher estimation accuracy. Therefore, it has the ability to handle large amount of multidimensional response data with different item responses.
View Article and Find Full Text PDFObjective: Asthma is a common chronic disease that imposes a substantial burden on individuals and society. However, the natural history of childhood asthma in a large population remained to be studied. This study aimed to describe the natural course of childhood asthma and examine the association between early life factors and childhood asthma.
View Article and Find Full Text PDFThe accelerated failure time mixture cure (AFTMC) model is widely used for survival data when a portion of patients can be cured. In this paper, a Bayesian semiparametric method is proposed to obtain the estimation of parameters and density distribution for both the cure probability and the survival distribution of the uncured patients in the AFTMC model. Specifically, the baseline error distribution of the uncured patients is nonparametrically modeled by a mixture of Dirichlet process.
View Article and Find Full Text PDFSpatial ordinal data observed separately for multiple subjects are common in biomedical research, yet statistical methodology for such ordinal data analysis is limited. The existing methodology often assumes a single realization of spatial ordinal data without replications, a commonplace in disease mapping studies, and thus are not directly applicable. Motivated by a dataset evaluating periodontal disease (PD) status, we propose a multisubject spatial ordinal model that assumes a geostatistical spatial structure within a regression framework through an elegant latent variable representation.
View Article and Find Full Text PDFComput Stat Data Anal
December 2012
Compared to the proportional hazards model and accelerated failure time model, the accelerated hazards model has a unique property in its application, in that it can allow gradual effects of the treatment. However, its application is still very limited, partly due to the complexity of existing semiparametric estimation methods. We propose a new semiparametric estimation method based on the induced smoothing and rank type estimates.
View Article and Find Full Text PDF