Publications by authors named "Yinbo Qu"

The bioconversion of lignocellulosic biomass, which are abundant and renewable resources, into liquid fuels and bulk chemicals is a promising solution to the current challenges of resource scarcity, energy crisis, and carbon emissions. Considering the separation of some end-products, it is necessary to firstly obtain a high concentration separated fermentable sugar solution, and then conduct fermentation. For this purpose, in this study, using acid catalyzed steam explosion pretreated corn stover (ACSE-CS) and corn cob residues (CCR) as cellulosic substrate, respectively, the batch feeding strategies and enzymatic hydrolysis conditions were investigated to achieve the efficient enzymatic hydrolysis at high solid loading.

View Article and Find Full Text PDF

Cellulases have been widely used in many fields such as animal feed, textile, food, lignocellulose bioconversion, etc. Efficient and low-cost production of cellulases is very important for its industrial application, especially in bioconversion of lignocellulosic biomass. Filamentous fungi are currently widely used in industrial cellulase production due to their ability to secrete large amounts of active free cellulases extracellularly.

View Article and Find Full Text PDF

The filamentous fungus is widely used for the production of lignocellulolytic enzymes in industry. XYR1 is the major transcriptional activator of cellulases and hemicellulases in . However, rational engineering of XYR1 for improved lignocellulolytic enzymes production has been limited by the lack of structure information.

View Article and Find Full Text PDF

Brewer's spent grain (BSG) is a major low-value by-product of beer industry. To realize the high value application of BSG, this work proposed a strategy to produce single cell protein (SCP) with oligosaccharide prebiotics from BSG, via ammoniation pretreatment, enzymatic hydrolysis, and fermentation. The optimum conditions of ammoniation pretreatment obtained by response surface method were 11 % ammonia dosage (w/w), 63 °C for 26 h.

View Article and Find Full Text PDF

Endoglucanase (EG) is a key enzyme during enzymatic preparation of cellulose nanocrystals (CNCs). is a thermophilic fungus that has thermal properties and a high secretion of endoglucanases (EGs), and could serve as potential sources of EGs for the preparation of CNCs. In this work, four different GH families (GH5, GH7, GH12, and GH45) of EGs from were expressed and purified, and their enzymatic characteristics and feasibility of application in CNC preparation were investigated.

View Article and Find Full Text PDF

The chromatin structure is generally regulated by chromatin remodelers and histone modifiers, which affect DNA replication, repair, and levels of transcription. The first identified histone acetyltransferase was Hat1/KAT1, which belongs to lysine (K) acetyltransferases. The catalytic subunit Hat1 and the regulatory subunit Hat2 make up the core HAT1 complex.

View Article and Find Full Text PDF

The study investigated the feasibility of co-production of nanocellulose crystal (CNC) and ethanol using the bleached pine kraft pulp (BPKP) as a substrate by enzymatic hydrolysis. An engineering strain Penicillum oxalicum cEES-XM was constructed to produce suitable cellulase used in enzymatic hydrolysis of BPKP for preparing CNC. The cellulase from Trichoderma reesei SCB18 was used for simultaneous saccharification and fermentation of residues and hydrolysates from enzymatic hydrolysis for producing ethanol.

View Article and Find Full Text PDF

The fungus Trichoderma reesei is a powerful host for secreted production of proteins. The promoter of cdna1 gene, which encodes a small basic protein of unknown function and high expression, is commonly used for constitutive protein production in T. reesei.

View Article and Find Full Text PDF

Corn fiber, a by-product from the corn processing industry, mainly composed of residual starch, cellulose, and hemicelluloses, is a promising raw material for producing cellulosic ethanol and value-added products due to its abundant reserves and low costs of collection and transportation. Now, several technologies for the production of cellulosic ethanol from corn fiber have been reported, such as the D3MAX process, Cellerate™ process, etc., and part of the technologies have also been used in industrial production in the United States.

View Article and Find Full Text PDF

Corn fiber, a by-product from the corn-processing industry, is an attractive feedstock for cellulosic ethanol because of its rich carbohydrate content (mainly residual starch, cellulose, and hemicellulose), abundant reserves, easy collection, and almost no transportation cost. However, the complex structure and components of corn fiber, especially hemicellulose, make it difficult to be effectively hydrolyzed into fermentable sugars through enzymatic hydrolysis. This study developed a simple and easy industrialized process without detoxification treatment for high-yield ethanol produced from corn fiber.

View Article and Find Full Text PDF

The degradation of lignocellulosic biomass by cellulolytic enzymes is involved in the global carbon cycle. The hydrolysis of lignocellulosic biomass into fermentable sugars is potential as an excellent industrial resource to produce a variety of chemical products. The production of cellulolytic enzymes is regulated mainly at the transcriptional level in filamentous fungi.

View Article and Find Full Text PDF

Effective pretreatment is vital to improve the biomass conversion efficiency, which often requires the addition of xylanase as an accessory enzyme to enhance enzymatic saccharification of corn stover. In this study, we investigated the effect of two sophisticated pretreatment methods including ammonium sulfite (AS) and steam explosion (SE) on the xylanase profits involved in enzymatic hydrolysis of corn stover. We further explored the interactions between lignin and xylanase Xyn10A protein.

View Article and Find Full Text PDF

Background: Cellulolytic enzyme production in filamentous fungi requires a release from carbon catabolite repression (CCR). The protein CRE1/CreA (CRE = catabolite responsive element) is a key transcription factor (TF) that is involved in CCR and represses cellulolytic gene expression. CRE1/CreA represents the functional equivalent of Mig1p, an important Saccharomyces cerevisiae TF in CCR that exerts its repressive effect by recruiting a corepressor complex Tup1p-Cyc8p.

View Article and Find Full Text PDF

Bioconversion of lignocellulosic biomass to fuels and chemicals represents a new manufacturing paradigm that can help address society's energy, resource, and environmental problems. However, the low efficiency and high cost of lignocellulolytic enzymes currently used hinder their use in the industrial deconstruction of lignocellulose. To overcome these challenges, research efforts have focused on engineering the properties, synergy, and production of lignocellulolytic enzymes.

View Article and Find Full Text PDF

Although has been used for industrial production of β-carotene, the effects of light and oxidative stress on its synthesis have not been fully clarified. The present study focuses on the effects of light and reactive oxygen species (ROS) on carotenoid synthesis and their multilevel regulation in . Blue light significantly influenced the intracellular ROS levels, carotenoid contents, and transcription of carotenoid structural genes, while ROS levels were positively correlated with intracellular carotenoid contents and transcriptional levels of carotenoid structural genes.

View Article and Find Full Text PDF

Homeodomain-containing transcription factors (Htfs) play important roles in animals, fungi, and plants during some developmental processes. Here, a homeodomain-containing transcription factor Htf1 was functionally characterized in the cellulase-producing fungi 114-2. Htf1 was shown to participate in colony growth and conidiation through regulating the expression of its downstream transcription factor BrlA, the key regulator of conidiation in 114-2.

View Article and Find Full Text PDF

The efficient production of lignocellulolytic enzyme systems is an important support for large-scale biorefinery of plant biomass. On-site production of lignocellulolytic enzymes could increase the economic benefits of the process by lowering the cost of enzyme usage. Penicillium species are commonly found lignocellulose-degrading fungi in nature, and have been used for industrial production of cellulase preparations due to their abilities to secrete complete and well-balanced lignocellulolytic enzyme systems.

View Article and Find Full Text PDF

Efficient cellulolytic enzyme production is important for the development of lignocellulose-degrading enzyme mixtures. However, purification of cellulases from their native hosts is time- and labor-consuming. In this study, a constitutive expression system was developed in for the secreted production of proteins.

View Article and Find Full Text PDF

Hyphal morphology is considered to have a close relationship with the production level of secreted proteins by filamentous fungi. In this study, the gul1 gene, which encodes a putative mRNA-binding protein, was disrupted in cellulase-producing fungus Trichoderma reesei. The hyphae of Δgul1 strain produced more lateral branches than the parent strain.

View Article and Find Full Text PDF

Enzymatic conversion of corn fiber to fermentable sugars is beneficial to improving the economic efficiency of corn processing. In this work, the filamentous fungus was found to secrete enzymes for efficient saccharification of un-pretreated corn fiber. Separate engineering of transcriptional activators ClrB, XlnR, and AraR led to enhanced production of different sets of lignocellulolytic enzymes.

View Article and Find Full Text PDF

As the universal methyl donor for methylation reactions, S-adenosylmethionine (AdoMet) plays an indispensable role in most cellular metabolic processes. AdoMet is synthesized by AdoMet synthetase. We identified the only one AdoMet synthetase (PoSasA) in filamentous fungus Penicillium oxalicum.

View Article and Find Full Text PDF

Objective: To construct convenient CRISPR/Cas9-mediated genome editing systems in industrial enzyme-producing fungi Penicillium oxalicum and Trichoderma reesei.

Results: Employing the 5S rRNA promoter from Aspergillus niger for guide RNA expression, the β-glucosidase gene bgl2 in P. oxalicum was deleted using a donor DNA carrying 40-bp homology arms or a donor containing no selectable marker gene.

View Article and Find Full Text PDF

Putative methyltranferase LaeA and LaeA-like proteins, which are conserved in many filamentous fungi, regulate the sporogenesis and biosynthesis of secondary metabolites. In this study, we reported the biological function of a LaeA-like methyltransferase, Penicillium oxalicum Mtr23B, which contains a methyltransf_23 domain and an S-adenosylmethionine binding domain, in controlling spore pigment formation and in the expression of secondary metabolic gene cluster and glycoside hydrolase genes. Additionally, we compared Mtr23B and LaeA, and determined their similarities and differences in terms of their roles in regulating the above biological processes.

View Article and Find Full Text PDF

The filamentous fungus is one of the most studied cellulolytic organisms and the major producer of cellulases for industrial applications. However, undesired degradation of cellulases often happens in culture filtrates and commercial enzyme preparations. Even studies have been reported about describing proteolytic degradation of heterologous proteins in , there are few systematic explorations concerning the extracellular proteases responsible for degradation of cellulases.

View Article and Find Full Text PDF

Histone methylation is associated with transcription regulation, but its role for glycoside hydrolase (GH) biosynthesis is still poorly understood. We identified the histone H3 lysine 79 (H3K79)-specific methyltransferase Dot1 in . Dot1 affects conidiation by regulating the transcription of key regulators (BrlA, FlbC, and StuA) of asexual development and is required in normal hyphae septum and branch formation by regulating the transcription of five septin-encoding genes, namely, , , , , and .

View Article and Find Full Text PDF