Publications by authors named "YinXiu Zhan"

Background: Non-small cell lung cancers (NSCLCs) with fusions are effectively treated with tyrosine kinase inhibitors (TKIs). The widespread use of next-generation sequencing (NGS) assays to study the molecular profile of NSCLCs, can identify rare fusion partners of . Therapy decisions are made without considering which fusion partner is present and its potential oncogenic properties.

View Article and Find Full Text PDF

Mismatch repair deficiency (MMR-d) and microsatellite instability (MSI) are prognostic and predictive biomarkers in oncology. Current testing for MMR/MSI relies on immunohistochemistry (IHC) for MMR proteins and molecular assays for MSI detection. This combined diagnostic strategy, however, lacks tumor specificity and does not account for gene variants.

View Article and Find Full Text PDF

Purpose: Comprehensive genomic profiling is becoming increasingly important in the management of patients with metastatic breast cancer (mBC). Real-world clinical outcomes from applying molecular tumor boards (MTBs) recommendations in this context remain limited. Accordingly, we conducted a retrospective, single-institution analysis to evaluate the clinical impact of discussing patients affected by mBC at the MTB.

View Article and Find Full Text PDF
Article Synopsis
  • Laryngeal preservation strategies in LA-LHSCC focus on curing the disease while keeping the larynx functional, reducing the need for total laryngectomy and its negative effects on quality of life.* -
  • Various non-surgical treatments like radiotherapy and chemoradiation have been explored, but reliable predictors for treatment success are still lacking, which poses a significant clinical challenge.* -
  • The PRESERVE trial aims to address this issue by analyzing past data to create a predictive classifier that combines various patient data types, ultimately improving patient selection for laryngeal preservation treatments.*
View Article and Find Full Text PDF

Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin.

View Article and Find Full Text PDF
Article Synopsis
  • More than 500 kinases play critical roles in cellular processes, and their deregulation is linked to cancer and inflammation, with 80 clinical kinase inhibitors (CKIs) approved for use.
  • CKIs often affect multiple kinases beyond their intended targets, leading to both increased effectiveness and unwanted side effects that are sometimes hard to predict.
  • The study presents a novel approach using chromatin modifications to evaluate CKI effects on macrophage activation, which proved more effective than traditional methods, helping to identify CKI similarities, new specificities, and potential repurposing for inflammation control.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the structural changes in immunoglobulin heavy-chain (Igh) loci that create diverse antibody repertoires, revealing the complexity of chromosomal interactions involved.
  • Using a technique called tiled Capture Hi-C, researchers mapped chromatin interactions in the Igh locus of progenitor B cells, showing how the locus forms subdomains and flexible loops for gene recombination.
  • They found that the unique structures of the Igh locus, along with interactions between different immunoglobulin loci and developmental factors, suggest a coordinated network that influences B cell development and antibody diversity.
View Article and Find Full Text PDF

Loop extrusion by motor proteins mediates the attractive interactions in chromatin on the length scale of megabases, providing the polymer with a well-defined structure and at the same time determining its dynamics. The mean-square displacement of chromatin loci varies from a Rouse-like scaling to a more constrained subdiffusion, depending on cell type, genomic region, and time scale. With a simple polymeric model, we show that such a Rouse-like dynamics occurs when the parameters of the model are chosen so that contacts are local along the chain, while in the presence of nonlocal contacts we observe subdiffusion at short time scales with exponents smaller than 0.

View Article and Find Full Text PDF

This protocol provides specific details on how to perform Hi-C, the genome-wide version of Chromosome Conformation Capture (3C) followed by high-throughput sequencing, in Drosophila embryos. Hi-C provides a genome-wide population-averaged snapshot of the 3D genome organization within nuclei. In Hi-C, formaldehyde-cross-linked chromatin is enzymatically digested using restriction enzymes; digested fragments are biotinylated and subjected to proximity ligation; ligated fragments are purified using streptavidin followed by paired-end sequencing.

View Article and Find Full Text PDF

CUT&Tag is a method to map the genome-wide distribution of histone modifications and some chromatin-associated proteins. CUT&Tag relies on antibody-targeted chromatin tagmentation and can easily be scaled up or automatized. This protocol provides clear experimental guidelines and helpful considerations when planning and executing CUT&Tag experiments.

View Article and Find Full Text PDF

In mammals, interactions between sequences within topologically associating domains enable control of gene expression across large genomic distances. Yet it is unknown how frequently such contacts occur, how long they last and how they depend on the dynamics of chromosome folding and loop extrusion activity of cohesin. By imaging chromosomal locations at high spatial and temporal resolution in living cells, we show that interactions within topologically associating domains are transient and occur frequently during the course of a cell cycle.

View Article and Find Full Text PDF

The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g.

View Article and Find Full Text PDF

Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs). However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity.

View Article and Find Full Text PDF

In the absence of a clear molecular understanding of the mechanism that stabilizes specific contacts in interphasic chromatin, we resort to the principle of maximum entropy to build a polymeric model based on the Hi-C data of the specific system one wants to study. The interactions are set by an iterative Monte Carlo algorithm to reproduce the average contacts summarized by the Hi-C map. The study of the ensemble of conformations generated by the algorithm can report a much richer set of information than the experimental map alone, including colocalization of multiple sites, fluctuations of the contacts, and kinetical properties.

View Article and Find Full Text PDF

Detection of diffraction-limited spots in single-molecule microscopy images is traditionally performed with mathematical operators designed for idealized spots. This process requires manual tuning of parameters that is time-consuming and not always reliable. We have developed deepBlink, a neural network-based method to detect and localize spots automatically.

View Article and Find Full Text PDF

Fundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development.

View Article and Find Full Text PDF

An active loop-extrusion mechanism is regarded as the main out-of-equilibrium mechanism responsible for the structuring of megabase-sized domains in chromosomes. We developed a model to study the dynamics of the chromosome fiber by solving the kinetic equations associated with the motion of the extruder. By averaging out the position of the extruder along the chain, we build an effective equilibrium model capable of reproducing experimental contact maps based solely on the positions of extrusion-blocking proteins.

View Article and Find Full Text PDF

cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated.

View Article and Find Full Text PDF

The mouse X-inactivation center (Xic) locus represents a powerful model for understanding the links between genome architecture and gene regulation, with the non-coding genes Xist and Tsix showing opposite developmental expression patterns while being organized as an overlapping sense/antisense unit. The Xic is organized into two topologically associating domains (TADs) but the role of this architecture in orchestrating cis-regulatory information remains elusive. To explore this, we generated genomic inversions that swap the Xist/Tsix transcriptional unit and place their promoters in each other's TAD.

View Article and Find Full Text PDF
Article Synopsis
  • Current research on chromosome folding is mainly based on chromosome conformation capture (3C) experiments, which detect chromosomal interactions through crosslinking.
  • A new method called DamC combines DNA methylation detection with next-generation sequencing to measure chromosome structure in living cells without crosslinking.
  • DamC successfully validated the presence of topologically associating domains (TADs) and CTCF loops in mouse embryonic stem cells, revealing that chromosome structure can be manipulated by forming new loops between different CTCF sites.
View Article and Find Full Text PDF

Biological phase transitions form membrane-less organelles that generate distinct cellular environments. How molecules are partitioned between these compartments and the surrounding cellular space and the functional consequence of this localization is not well understood. Here, we report the localization of mRNA to stress granules (SGs) and processing bodies (PBs) and its effect on translation and degradation during the integrated stress response.

View Article and Find Full Text PDF

RNA degradation plays a fundamental role in regulating gene expression. In order to characterize the spatiotemporal dynamics of RNA turnover in single cells, we developed a fluorescent biosensor based on dual-color, single-molecule RNA imaging that allows intact transcripts to be distinguished from stabilized degradation intermediates. Using this method, we measured mRNA decay in single cells and found that individual degradation events occur independently within the cytosol and are not enriched within processing bodies.

View Article and Find Full Text PDF

Understanding how regulatory sequences interact in the context of chromosomal architecture is a central challenge in biology. Chromosome conformation capture revealed that mammalian chromosomes possess a rich hierarchy of structural layers, from multi-megabase compartments to sub-megabase topologically associating domains (TADs) and sub-TAD contact domains. TADs appear to act as regulatory microenvironments by constraining and segregating regulatory interactions across discrete chromosomal regions.

View Article and Find Full Text PDF