Publications by authors named "Yin-zhong Ma"

The acute phase of ischemic stroke is marked by a surge in matrix metalloproteinase-9 (MMP-9) activity. While integral to natural repair processes, MMP-9 exacerbates injury by breaking down the blood-brain barrier (BBB) and promoting edema and inflammation. MMP-9 is predominantly secreted by inflammatory cells such as neutrophils, macrophages and microglia soon after stroke onset.

View Article and Find Full Text PDF

Background: Vasogenic cerebral edema resulting from blood-brain barrier (BBB) damage aggravates the devastating consequences of intracerebral hemorrhage (ICH). Although augmentation of endothelial Wnt/β-catenin signaling substantially alleviates BBB breakdown in animals, no agents based on this mechanism are clinically available. Lithium is a medication used to treat bipolar mood disorders and can upregulate Wnt/β-catenin signaling.

View Article and Find Full Text PDF

Although upregulation of endothelial Wnt/β-catenin signaling may be used to treat blood-brain barrier (BBB) breakdown caused by cerebral ischemia/reperfusion injury, no agents based on this mechanism are available clinically. Lithium, a medication used for treating bipolar mood disorders, upregulates Wnt/β-catenin signaling, but whether lithium alleviates BBB breakdown after ischemic stroke by upregulating endothelial Wnt/β-catenin signaling is unclear. Here, we evaluated the BBB-protective effect of lithium in adult mice with 1-h middle cerebral artery occlusion and 48-h reperfusion (MCAO/R) by determining neurological outcomes, BBB function and related molecular components.

View Article and Find Full Text PDF

Tissue-type plasminogen activator (t-PA) remains the only approved therapy for acute ischemic stroke but has a restrictive treatment time window of 4.5 hr. Prolonged ischemia causes blood-brain barrier (BBB) damage and increases the incidence of hemorrhagic transformation (HT) secondary to reperfusion.

View Article and Find Full Text PDF

The persistence of neurogenesis raises the idea that neurons produced by the resident or transplanted neural stem cells could replace the neurons lost from brain injury or neurodegenerative disease. Therefore, compounds or methods for promoting neuronal differentiation become the focus of neurodegenerative disease therapy research. Claulansine F (Clau F), a newly discovered carbazole alkaloid, has been showed to induce neuritogenesis in PC12 cells.

View Article and Find Full Text PDF

Stroke is a major cause of death and disability worldwide. However, treatment options to date are very limited. To meet the need for validating the novel therapeutic approaches and understanding the physiopathology of the ischemic brain injury, experimental stroke models were critical for preclinical research.

View Article and Find Full Text PDF

Aim: To study the effects of Claulansine F (Clau F), a carbazole alkaloid isolated from the stem of Clausena lansium (Lour) Skeels, on neuritogenesis of PC12 cells, and to elucidate the mechanism of action.

Methods: Neuritogenesis of PC12 cells was quantified under an inverted microscope. Expression of the neurite outgrowth marker GAP-43 was detected using immunofluorescence.

View Article and Find Full Text PDF