The cosmopolitan red algal genus Pyropia sensu lato is the most speciose of the bladed Bangiales genera. In a major revision of the Bangiales, Pyropia was resurrected from Porphyra, although there was evidence at the time that species of Pyropia could be separated into several genera. Subsequent global phylogenetic analyses continued to resolve species assigned to Pyropia into several major clades with strong support, and the latest biogeographic analyses indicated that species distribution was also a pointer to the underlying phylogeny of Pyropia sensu lato.
View Article and Find Full Text PDFCarotenoids are essential phytonutrients synthesized by all photosynthetic organisms. Acyclic lycopene is the first branching point for carotenoid biosynthesis. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of its open ends and direct the metabolic flux into different downstream branches.
View Article and Find Full Text PDFA molecular taxonomic study was undertaken for the first time of the bladed Bangiales of the mainland coast of China (Northwest Pacific) based on sequence data of 201 plastid rbcL and 148 nuclear 18S sequences of historical and contemporary specimens. The results revealed that only one genus of bladed Bangiales, Pyropia, was present along Chinese coast. Species delimitation was determined using two empirical methods: the Automatic Barcode Gap Discovery (ABGD) and General Mixed Yule Coalescence (GMYC) coupled with detection of monophyly in tree reconstruction.
View Article and Find Full Text PDFLycopene cyclases cyclize the open ends of acyclic lycopene (ψ,ψ-carotene) into β- or ε-ionone rings in the crucial bifurcation step of carotenoid biosynthesis. Among all carotenoid constituents, β-carotene (β,β-carotene) is found in all photosynthetic organisms, except for purple bacteria and heliobacteria, suggesting a ubiquitous distribution of lycopene β-cyclase activity in these organisms. In this work, we isolated a gene () encoding a lycopene β-cyclase from , a red alga that is considered to be one of the primitive multicellular eukaryotic photosynthetic organisms and accumulates carotenoid constituents with both β- and ε-rings, including β-carotene, zeaxanthin, α-carotene (β,ε-carotene) and lutein.
View Article and Find Full Text PDFCarotene hydroxylases catalyze the hydroxylation of α- and β-carotene hydrocarbons into xanthophylls. In red algae, β-carotene is a ubiquitously distributed carotenoid, and hydroxylated carotenoids such as zeaxanthin and lutein are also found. However, no enzyme with carotene hydroxylase activity had been previously identified in red algae.
View Article and Find Full Text PDF