Neuromorphic electronics, which use artificial photosensitive synapses, can emulate biological nervous systems with in-memory sensing and computing abilities. Benefiting from multiple intra/interactions and strong light-matter coupling, two-dimensional heterostructures are promising synaptic materials for photonic synapses. Two primary strategies, including chemical vapor deposition and physical stacking, have been developed for layered heterostructures, but large-scale growth control over wet-chemical synthesis with comprehensive efficiency remains elusive.
View Article and Find Full Text PDFInspired by the 2D bilayer lipid membranes in nature, a unique supramolecular "push-pull" synergetic strategy toward self-assembled 2D organic crystals (2DOCs) is proposed in this work, which can effectively suppress the interlayer 3D stacking while maintaining the assembly of the intralayer for 2D growth. For this purpose, a model molecule PF-Py consisting of a planar supramolecular "attractor" and a nonplanar steric "repellor" is designed for the solution self-assembly process. Well-defined 2DOCs including crystal nanosheets and millimeter-sized crystal films with layered amphiphile-like packing are obtained, which is analogical to the cell membranes of living organisms.
View Article and Find Full Text PDFTwo spirocyclic aromatic hydrocarbon derivatives were prepared to clarify the molecular geometry effects on the regulation of the crystalline morphologies and photophysical behaviors of organic nanocrystals. Due to the different structural symmetry of a spiro-center, distinguishing nanocrystal morphologies with unique crystallization-enhanced/quenched emission was achieved.
View Article and Find Full Text PDFThree pyrene-based spirocyclic aromatic hydrocarbons (Py-SAHs) were prepared to clarify the roles of molecular segments in regulating the morphologies and photophysical properties of organic microcrystals. Due to the different supramolecular steric hindrance (SSH) effect between bulky groups and pyrene rings, distinct nanocrystal morphologies with unique photoluminescence properties were realized.
View Article and Find Full Text PDFThree diazafluorene derivatives triphenylamine (TPA)(PDAF) ( = 1, 2, 3) serving as small molecular elements are designed and synthesized via concentrated sulfuric acid mediated Friedel-Crafts reaction. With highly nonplanar topological configuration, TPA(PDAF) shows weaker intermolecular interaction in the solid states and thus exhibits single nanomolecular behavior, which is crucial for charge stored and retained in an organic field-effect transistor (OFET) memory device. Furthermore, diazafluorene derivatives possess a completely separate highest occupied molecular orbital/lowest unoccupied molecular orbital, which offers ideal hole and electron trapping sites.
View Article and Find Full Text PDFThree isomers were prepared by covalently grafting carbazole (Cz) onto spiro[fluorene-9,9'-xanthene] (SFX) at different positions. Due to the complicated and variable roles of molecular segments, an evolution of the corresponding molecular packing mode was realized, accompanied by the change of nanocrystal morphology and photoluminescence properties.
View Article and Find Full Text PDFRational molecular design for the organic nanocrystal morphology still remains a challenge due to the structural diversity and complicated weak intermolecular interactions. In this work, a typical attractor-repulsor molecule N,N-diphenyl-4-(9-phenyl-fluoren-9-yl) phenylamine (TPA-PF) is designed to explore a general assembly strategy for 2D nanocrystals. Via an interdigital lipid bilayer-like (ILB) molecular packing mode, large-sized lamellar 2D nanosheets are obtained with a length:width:thickness ratio as ≈2500:1000:1.
View Article and Find Full Text PDFPseudogene HMGA1L2 mRNA level was detected using RT-PCR in 50 cases of thyroid lesions. The results show that HMGA1L2 mRNA was found in all 12 cases of nodular goiter, all 9 cases of thyroid adenoma and all 15 cases of papillary carcinoma. In 14 cases of thyroid follicular carcinoma, However, the frequency of HMGA1L2 mRNA expression was 35.
View Article and Find Full Text PDF