Context: The efficient catalysis of CO adsorption and activation presents a formidable challenge due to its pronounced thermodynamic stability and kinetic inertia. Previous experiments have left gaps in understanding the promotional effects and underlying mechanism of potassium. In this study, we systematically investigate CO adsorption and activation on clean and potassium-preadsorbed low index surfaces of transition metals.
View Article and Find Full Text PDFAccumulating evidence indicates that plant plastocyanin is involved in copper homeostasis, yet the physiological relevance remains elusive. In this study, we found that a plastocyanin gene (SsPETE2) from euhalophyte Suaeda salsa possessed a novel antioxidant function, which was associated with the copper-chelating activity of SsPETE2. In S.
View Article and Find Full Text PDFChitinase is one of the important pathogenesis-related (PR) proteins in plants. By comparative proteomics study, a novel pathogen-responsive chitinase (known as GbCHI) has been identified from sea-island cotton (Gossypium barbadense). The GbCHI cDNA was cloned from wilt-resistant sea-island cotton and the anti-fungal activity of the gene product was investigated.
View Article and Find Full Text PDFGalanin is a neuropeptide widely expressed in the brain. It is implicated in energy expenditure, feeding, and the regulation of body weight. Numerous studies have revealed that galanin regulates food intake via galanin receptors, 5-HT(1A) receptor and adrenergic α-2 receptor.
View Article and Find Full Text PDFVerticillium wilt of cotton is a vascular disease mainly caused by the soil-born filamentous fungus Verticillium dahliae. To study the mechanisms associated with defense responses in wilt-resistant sea-island cotton (Gossypium barbadense) upon V. dahliae infection, a comparative proteomic analysis between infected and mock-inoculated roots of G.
View Article and Find Full Text PDF