Publications by authors named "Yin-Chu Ma"

The combination of chemotherapy and radiotherapy (chemoradiotherapy) is a promising strategy, extensively studied and applied clinically. Meanwhile, radiosensitizers play an important role in improving clinical radiotherapy therapeutic efficacy. There are still some disadvantages in practical applications, because radiosensitizers and drugs are difficult to deliver spatio-temporally to tumor sites and work simultaneously with low efficiency for DNA damage and repair inhibition, leading to an inferior synergistic effect.

View Article and Find Full Text PDF

The tumor hypoxic microenvironment (THME) has a profound impact on tumor progression, and modulation of the THME has become an essential strategy to promote photodynamic therapy (PDT). Here, an oxygen self-supplied nanodelivery system that is based on nanometal-organic frameworks (nMOFs) with embedded AuNPs (Au@ZIF-8) on the nMOF surface as a catalase (CAT)-like nanozyme and encapsulating Ce6 inside as a photosensitizer was found to mitigate tumor hypoxia and reinforce PDT. As soon as Au@ZIF-8 reaches the tumor site, the AuNP nanozyme can catalyze excessive H2O2 to produce O2 to alleviate tumor hypoxia, promoting the production of 1O2 with strong toxicity toward tumor cells under irradiation.

View Article and Find Full Text PDF

Multidrug resistance (MDR) has been recognized as a key factor contributing to the failure of chemotherapy for cancer in the clinic, often due to insufficient delivery of anticancer drugs to target cells. For addressing this issue, a redox-responsive polyphosphoester-based micellar nanomedicine, which can be triggered to release transported drugs in tumor cells, has been developed. The micelles are composed of diblock copolymers with a hydrophilic PEG block and a hydrophobic polyphosphoester (PPE) block bearing a disulfide bond in a side group.

View Article and Find Full Text PDF

Recently, micelles, which are self-assembled by amphiphilic copolymers, have attracted tremendous attention as promising drug delivery systems for cancer treatment. Thus, the hydrophobic core of the micelles, which could efficiently encapsulate small molecular drug, will play a significant role for the anticancer efficiency. Unfortunately, the effect of hydrophobicity of micellar core on its anticancer efficiency was rarely reported.

View Article and Find Full Text PDF

The intracellular drug release rate from the hydrophobic core of self-assembled nanoparticles can significantly affect the therapeutic efficacy. Currently, the hydrophobic core of many polymeric nanoparticles which are usually composed of poly(ε-caprolactone) (PCL), polylactide (PLA), or poly(D, L-lactide-co-glycolide) (PLGA) may hinder the diffusion of drug from the core because of their glassy state at room temperature. To investigate the effect of the hydrophobic core state on therapeutic efficacy, we synthesized an amphiphilic diblock copolymers of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polyphosphoester, which were in a viscous flow state at room temperature.

View Article and Find Full Text PDF