Voltage-gated potassium channel (VGKC) complex autoimmunity associated with nerve hyperexcitability is an uncommon clinical spectrum. It is mostly characterized by limbic encephalitis, continuous neuromyotonia, and dysautonomia. Pain, however, has rarely been reported as the first symptom.
View Article and Find Full Text PDFOpioids, such as morphine, are the most potent drugs used to treat pain. Long-term use results in high tolerance to morphine. High mobility group box-1 (HMGB1) has been shown to participate in neuropathic or inflammatory pain, but its role in morphine tolerance is unclear.
View Article and Find Full Text PDFBackground: The development of morphine tolerance is a clinical challenge for managing severe pain. Studies have shown that neuroinflammation is a critical aspect for the development of analgesic tolerance. We found that AMPK-autophagy activation could suppress neuroinflammation and improve morphine tolerance via the upregulation of suppressor of cytokine signaling 3 (SOCS3) by inhibiting the processing and maturation of microRNA-30a-5p.
View Article and Find Full Text PDFBackground: The development of antinociceptive tolerance following repetitive administration of opioid analgesics significantly hinders their clinical use. Evidence has accumulated indicating that microglia within the spinal cord plays a critical role in morphine tolerance. The inhibitor of microglia is effective to attenuate the tolerance; however, the mechanism is not fully understood.
View Article and Find Full Text PDFBackground: Propofol has been reported to protect vascular endothelial cells against oxidative stress. In this study we investigated its effect on hydrogen peroxide (H2O2)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and examined the possible signaling pathways.
Methods: HUVECs were pretreated with propofol (1, 5, 25, and 50 µM) for 30 min and then co-incubated with 0.
Propofol is a widely used intravenous anesthetic agent with antioxidant/antiapoptotic properties. Aldose reductase (AR) has been implicated in oxidative stress and apoptosis in endothelial cells. AR inhibition may protect cells from cardiovascular injury.
View Article and Find Full Text PDF