Publications by authors named "Yin Zhuoxin"

China is the biggest emitter of greenhouse gases (GHGs) in the world, and agricultural GHG emission accounts for nearly a fifth of the total emission in China. To understand the carbon absorption and emission characteristics of agricultural production systems in those arid oasis areas, a typical representative city in northwestern China, Zhangye City, was selected for study.The emission factor method was used to analyze and calculate the characteristics of changing carbon emission dynamics in the whole agricultural production system in Zhangye city region (38,592 km) from 2010 to 2021.

View Article and Find Full Text PDF

Heavy metal (HM) pollution is a severe and common environmental problem in mining area soil. It is imperative to understand the micro ecological characteristics of mining area soil for HM contaminated soil remediation. This study described the effects of HM pollution level and soil physical and chemical parameters on microbial diversity.

View Article and Find Full Text PDF

We evaluated the variations of bacterial communities in six heavy metal contaminated soils sampled from Yanzi Bian (YZB) and Shanping Cun (SPC) tailings located in northwestern China. Statistical analysis showed that both the heavy metals and soil chemical properties could affect the structure and diversity of the bacterial communities in the tailing soils. Cd, Cu, Zn, Cr, Pb, pH, SOM (soil organic matters), TP (total phosphorus) and TN (total nitrogen) were the main driving factors of the bacterial community variations.

View Article and Find Full Text PDF

The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e.

View Article and Find Full Text PDF

The immobilization of U(vi) at the solid-water interface is an important process affecting its transportation and migration in the environment, and is predominantly controlled by the sorption behavior of U(vi). In this study, U(vi) sorption on Fe(ii) and Fe(iii) oxyhydroxides prepared by a coprecipitation method was studied under a range of physicochemical conditions, including pH, ionic strength, presence of humic acid (HA) and temperature. The results showed that the sorption of U(vi) on iron oxyhydroxides is chemical, and that the principal rate limitation is due to intraparticle diffusion.

View Article and Find Full Text PDF