Publications by authors named "Yin Chi"

Osteosarcoma tissues demonstrated elevated expression of proteins (FDX1 and DLAT) integral to cuproptosis in our preliminary study, indicating the potential effectiveness of anti-tumor strategies predicated on this process. Nevertheless, the overexpression of copper export proteins and the challenge of copper ion penetration may contribute to insufficient local copper ion concentration for inducing cuproptosis. Herein, we engineered a biomimetic copper-elesclomol-polyphenol network for the efficient delivery of copper ions and the copper ionophore elesclomol.

View Article and Find Full Text PDF

Osteosarcoma is a common primary malignant bone tumor in children and young adults, with limited progress in improving survival rates for metastatic or recurrent cases. Kinase inhibitors have emerged as potential treatments for osteosarcoma due to the critical role kinases play in regulating cellular networks. However, single-agent kinase inhibitors often face challenges due to the activation of compensatory oncogenic signaling pathways, which can undermine treatment efficacy.

View Article and Find Full Text PDF

Chemoresistance is one of the major causes of poor prognosis in osteosarcoma. Alternative therapeutic strategies for osteosarcoma are limited, indicating that increasing sensitivity to currently used chemotherapies could be an effective approach to improve patient outcomes. Using a kinome-wide CRISPR screen, we identified PRKDC as a critical determinant of doxorubicin (DOX) sensitivity in osteosarcoma.

View Article and Find Full Text PDF

This study explored the utility of quantitative real-time panfungal PCR assay in diagnosing invasive pulmonary fungal diseases (IPFD) in non-neutropenic patients. Panfungal PCR assay was performed on respiratory tract specimens from patients whose clinical signs could not exclude fungal infection. At the same time, the samples were subjected to bacterial and fungal culture, microscopic examination and galactomannan antigen (GM) test in order to find the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the 4 diagnostic methods in proven and probable cases.

View Article and Find Full Text PDF

The second most common male cancer is prostate cancer (PCa), which has a high tendency for bone metastasis. Long non-coding RNAs, including TMPO-AS1, play a crucial role in PCa progression. However, TMPO-AS1's function in PCa bone metastasis (BM) and its underlying molecular mechanisms are unclear.

View Article and Find Full Text PDF

Background: The molecular characteristics of prostate cancer (PCa) cells and the immunosuppressive bone tumor microenvironment (TME) contribute to the limitations of immune checkpoint therapy (ICT). Identifying subgroups of patients with PCa for ICT remains a challenge. Herein, we report that basic helix-loop-helix family member e22 (BHLHE22) is upregulated in bone metastatic PCa and drives an immunosuppressive bone TME.

View Article and Find Full Text PDF

We demonstrate a real-time, reusable, and reversible integrated optical sensor for temperature monitoring within harsh environments. The sensor architecture combines the phase change property of chalcogenide glasses (ChG) with the high-density integration advantages of high index silicon waveguides. To demonstrate sensor feasibility, ChG composition GeS, which is characterized by a sharp phase transition from amorphous to crystalline phase around 415 °C, is deposited over a 50 µm section of a single mode optical waveguide.

View Article and Find Full Text PDF

Background: Bone metastasis is the leading cause of tumor-related death in prostate cancer (PCa) patients. Long noncoding RNAs (lncRNAs) have been well documented to be involved in the progression of multiple cancers. Nevertheless, the role of lncRNAs in PCa bone metastasis remains largely unclear.

View Article and Find Full Text PDF

In this study, we described a novel display method to identify surface adhesion proteins of Cryptosporidium parvum. A cDNA library of the sporozoite and oocyst stages of C. parvum was expressed on ribosome and selectively and specifically screened with intestinal epithelial cells (IECs) from newborn Cryptosporidium-free Holstein calves.

View Article and Find Full Text PDF