Appl Environ Microbiol
February 2025
Unlabelled: The scale of plastic pollution boggles the mind. Nearly 400 megatons of virgin plastics are produced annually, with an environmental release rate of 80%, and plastic waste, including microplastics and nanoplastics, is associated with a plethora of problems. The naturally evolved abilities of plastic-degrading microbes offer a starting point for generating sustainable and eco-centric solutions to plastic pollution-a field of endeavor we term eco-microbiology.
View Article and Find Full Text PDFAs the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc.
View Article and Find Full Text PDFFlash Joule heating has been used as a versatile solid-state synthesis method in the production of a wide range of products, including organic, inorganic, and ceramic products. Conventional flash Joule heating systems are large and customized, presenting significant barriers in the cost of assembly, the expertise needed to operate, and uniformity of results between different systems. Even laboratory-scale flash Joule heating systems struggle to operate above 10 g capacity, and they suffer from poor temperature controllability.
View Article and Find Full Text PDFHalide perovskite nanocrystals (HPNCs) have emerged as promising materials for various light harvesting applications due to their exceptional optical and electronic properties. However, their inherent instability in water and biological fluids has limited their use as photocatalysts in the aqueous phase. In this study, we present highly water-stable SiO-coated HPNCs as efficient photocatalysts for antimicrobial applications.
View Article and Find Full Text PDFEngineering strain critically affects the properties of materials and has extensive applications in semiconductors and quantum systems. However, the deployment of strain-engineered nanocatalysts faces challenges, in particular in maintaining highly strained nanocrystals under reaction conditions. Here, we introduce a morphology-dependent effect that stabilizes surface strain even under harsh reaction conditions.
View Article and Find Full Text PDF3,4-Dihydroxy-L-phenylalanine (DOPA) serves as a post-translational modification amino acid present in mussel foot proteins. Mussels exploit the exceptional adhesive properties of DOPA to adhere to a wide range of surfaces. This study presents the development of sticky proteins and bacteria through the site-specific incorporation of DOPA using Genetic Code Expansion Technology.
View Article and Find Full Text PDFLithium iron phosphate (LiFePO, LFP) batteries are widely used in electric vehicles and energy storage systems due to their excellent cycling stability, affordability and safety. However, the rate performance of LFP remains limited due to its low intrinsic electronic and ionic conductivities. In this work, an ex situ flash carbon coating method is developed to enhance the interfacial properties for fast charging.
View Article and Find Full Text PDFNanowires have emerged as an important family of one-dimensional (1D) nanomaterials owing to their exceptional optical, electrical, and chemical properties. In particular, Cu nanowires (NWs) show promising applications in catalyzing the challenging electrochemical CO reduction reaction (CORR) to valuable chemical fuels. Despite early reports showing morphological changes of Cu NWs after CORR processes, their structural evolution and the resulting exact nature of active Cu sites remain largely elusive, which calls for the development of multimodal time-resolved nm-scale methods.
View Article and Find Full Text PDFSustainable manufacturing that prioritizes energy efficiency, minimal water use, scalability and the ability to generate diverse materials is essential to advance inorganic materials production while maintaining environmental consciousness. However, current manufacturing practices are not yet equipped to fully meet these requirements. Here we describe a flash-within-flash Joule heating (FWF) technique-a non-equilibrium, ultrafast heat conduction method-to prepare ten transition metal dichalcogenides, three group XIV dichalcogenides and nine non-transition metal dichalcogenide materials, each in under 5 s while in ambient conditions.
View Article and Find Full Text PDFEffective recycling of end-of-life Li-ion batteries (LIBs) is essential due to continuous accumulation of battery waste and gradual depletion of battery metal resources. The present closed-loop solutions include destructive conversion to metal compounds, by destroying the entire three-dimensional morphology of the cathode through continuous thermal treatment or harsh wet extraction methods, and direct regeneration by lithium replenishment. Here, we report a solvent- and water-free flash Joule heating (FJH) method combined with magnetic separation to restore fresh cathodes from waste cathodes, followed by solid-state relithiation.
View Article and Find Full Text PDFAntiferromagnets have attracted significant attention in the field of magnonics, as promising candidates for ultralow-energy carriers for information transfer for future computing. The role of crystalline orientation distribution on magnon transport has received very little attention. In multiferroics such as BiFeO the coupling between antiferromagnetic and polar order imposes yet another boundary condition on spin transport.
View Article and Find Full Text PDFFlash Joule heating has emerged as an ultrafast, scalable, and versatile synthesis method for nanomaterials, such as graphene. Here, we experimentally and theoretically deconvolute the contributions of thermal and electrical processes to the synthesis of graphene by flash Joule heating. While traditional methods of graphene synthesis involve purely chemical or thermal driving forces, our results show that the presence of charge and the resulting electric field in a graphene precursor catalyze the formation of graphene.
View Article and Find Full Text PDFPolymer nanofibers hold promise in a wide range of applications owing to their diverse properties, flexibility, and cost effectiveness. In this study, we introduce a polymer nanofiber drawing process in a scanning electron microscope and focused ion beam (SEM/FIB) instrument with observation. We employed a nanometer-sharp tungsten needle and prepolymer microcapsules to enable nanofiber drawing in a vacuum environment.
View Article and Find Full Text PDFNon-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet FeGeTe.
View Article and Find Full Text PDFAluminum nanocrystals (AlNCs) are of increasing interest as sustainable, earth-abundant nanoparticles for visible wavelength plasmonics and as versatile nanoantennas for energy-efficient plasmonic photocatalysis. Here, we show that annealing AlNCs under various gases and thermal conditions induces substantial, systematic changes in their surface oxide, modifying crystalline phase, surface morphology, density, and defect type and concentration. Tailoring the surface oxide properties enables AlNCs to function as all-aluminum-based antenna-reactor plasmonic photocatalysts, with the modified surface oxides providing varying reactivities and selectivities for several chemical reactions.
View Article and Find Full Text PDFNanoscale metallic glasses offer opportunities for investigating fundamental properties of amorphous solids and technological applications in biomedicine, microengineering, and catalysis. However, their top-down fabrication is limited by bulk counterpart availability, and bottom-up synthesis remains underexplored due to strict formation conditions. Here, a kinetically controlled flash carbothermic reaction is developed, featuring ultrafast heating (>10 K s) and cooling rates (>10 K s), for synthesizing metallic glass nanoparticles within milliseconds.
View Article and Find Full Text PDFBismuth ferrite has garnered considerable attention as a promising candidate for magnetoelectric spin-orbit coupled logic-in-memory. As model systems, epitaxial BiFeO thin films have typically been deposited at relatively high temperatures (650-800 °C), higher than allowed for direct integration with silicon-CMOS platforms. Here, we circumvent this problem by growing lanthanum-substituted BiFeO at 450 °C (which is reasonably compatible with silicon-CMOS integration) on epitaxial BaPbBiO electrodes.
View Article and Find Full Text PDFMonolayer graphene with nanometre-scale pores, atomically thin thickness and remarkable mechanical properties provides wide-ranging opportunities for applications in ion and molecular separations, energy storage and electronics. Because the performance of these applications relies heavily on the size of the nanopores, it is desirable to design and engineer with precision a suitable nanopore size with narrow size distributions. However, conventional top-down processes often yield log-normal distributions with long tails, particularly at the sub-nanometre scale.
View Article and Find Full Text PDFThe flash Joule heating (FJH) method converts many carbon feedstocks into graphene in milliseconds to seconds using an electrical pulse. This opens an opportunity for processing low or negative value resources, such as coal and plastic waste, into high value graphene. Here, a lab-scale automation FJH system that allows the synthesis of 1.
View Article and Find Full Text PDFVan der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties.
View Article and Find Full Text PDFThe staggering accumulation of end-of-life lithium-ion batteries (LIBs) and the growing scarcity of battery metal sources have triggered an urgent call for an effective recycling strategy. However, it is challenging to reclaim these metals with both high efficiency and low environmental footprint. We use here a pulsed dc flash Joule heating (FJH) strategy that heats the black mass, the combined anode and cathode, to >2100 kelvin within seconds, leading to ~1000-fold increase in subsequent leaching kinetics.
View Article and Find Full Text PDFStudies of vacancy-mediated anomalous transport properties have flourished in diverse fields since these properties endow solid materials with fascinating photoelectric, ferroelectric, and spin-electric behaviors. Although phononic and electronic transport underpin the physical origin of thermoelectrics, vacancy has only played a stereotyped role as a scattering center. Here we reveal the multifunctionality of vacancy in tailoring the transport properties of an emerging thermoelectric material, defective n-type ZrNiBi.
View Article and Find Full Text PDFSeed-mediated synthesis strategies, in which small gold nanoparticle precursors are added to a growth solution to initiate heterogeneous nucleation, are among the most prevalent, simple, and productive methodologies for generating well-defined colloidal anisotropic nanostructures. However, the size, structure, and chemical properties of the seeds remain poorly understood, which partially explains the lack of mechanistic understanding of many particle growth reactions. Here, we identify the majority component in the seed solution as an atomically precise gold nanocluster, consisting of a 32-atom Au core with 8 halide ligands and 12 neutral ligands constituting a bound ion pair between a halide and the cationic surfactant: AuX[AQA•X] (X = Cl, Br; AQA = alkyl quaternary ammonium).
View Article and Find Full Text PDF